Precommercial Thinning of Lodgepole Pine: Long-term Effects on Growth & Yield, Product Value and Wood Properties

Jim Stewart and Jared Salvail
Canadian Wood Fibre Centre
Overview

- Long-term Lodgepole Pine Silviculture Trial Network
 - PCT subset

- Stand density management effects on:
 - Growth & yield
 - Product and value
 - Wood properties
Long-term LPP Silviculture Trial Network - PCT Site Locations
PCT Trial Timeline

<table>
<thead>
<tr>
<th>Trial name</th>
<th>Year establ.</th>
<th>Age @ establ.</th>
<th>Age @ last measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>MacKay</td>
<td>1954</td>
<td>22</td>
<td>81</td>
</tr>
<tr>
<td>Gregg 63</td>
<td>1963</td>
<td>7</td>
<td>60</td>
</tr>
<tr>
<td>Gregg 84</td>
<td>1984</td>
<td>28</td>
<td>58</td>
</tr>
<tr>
<td>TP Pole</td>
<td>1967</td>
<td>25</td>
<td>73</td>
</tr>
</tbody>
</table>
Trial Design – MacKay

- Three replicate blocks
- Four spacing treatments
- Unthinned control
- Re-thinned treatments

MacKay Thinning Experiment
Project A 34 (1954)
Trial Design – Teepee Pole Creek

- Two replicate blocks
- Five spacing treatments
- 100-tree plots
- Three slope aspects
Trial Design – Gregg Burn 1963

- Two replicate blocks
- Five spacing treatments
- 100-tree plots
- Three site productivities
Trial Design – Gregg Burn 1984

- Co-located for treatment timing comparison
- Share three spacing treatments

Gregg Burn 1963 and 1984 Spacing Experiments - Medium Productivity Site

Legend
- Main Road
- Boundary Paint
- 1964 Installation
- 1984 Installation
- Control
- Interpretive sign

<table>
<thead>
<tr>
<th>Plot 1</th>
<th>Plot 2</th>
<th>Plot 3</th>
<th>Plot 4</th>
<th>Plot 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 s/h</td>
<td>1000 s/h</td>
<td>2000 s/h</td>
<td>3000 s/h</td>
<td>4000 s/h</td>
</tr>
</tbody>
</table>

Prepared by: R. Charles Noble
Canadian Forest Service
Date: December 2005
PCT Trials

Gregg Low 1963

TP Pole
South 2002
To determine the effect of different intensities of pre-commercial thinning (juvenile spacing) on the long-term growth and yield of lodgepole pine stands
Density class treatments

(keyed to establishment densities)
A (~500 stems/ha),
B (~750 – 1000 stems/ha),
C (~2000 stems/ha),
D (~3000 stems/ha),
E (~4000 stems/ha),
F (~8000 stems/ha),
G (unthinned; ~11 000 stems/ha).
Stand density

- High productivity sites ►
 ↑ self-thinning
- Otherwise, self-thinning trajectories were similar
Mortality rate

- Mortality was a function of stand density
- Range: near 0 to 4 %/yr
Tree Dbh

- DBH decreased with increasing stand density, and
- increased with site productivity
Tree height

- Height affected by density treatments
- Effect inconsistent across trials
Tree size

- Thinning results in larger tree volumes, and wider size distribution.
Yield development

- 13/7 merch. volume MAI
- Few treatments have reached MAI culmination
Yield – total volume

- Total volume increased with increasing density treatment,
- Inconsistent effect among sites,
- n.s.d. among density treatments at MacKay
Yield – merch volume

- 13/7 merch. standard
- Low merch volume in plots far from rotation
- Little or no effect of thinning intensity on volume
Key Findings

- PCT unlikely to increase yields
- However, thinning may not result in a yield loss*
- MAI culmination later in lower densities
- Optimal initial density of 2000 – 3000 SpH maximized tree growth with little loss in volume
Information Report FI-X-16

- Available on the CFS Publication website

- Tech notes coming soon
PCT Effects on Products and Value

- To determine the effect of different intensities of PCT on the potential product out-turn and market value of lodgepole pine stands at harvest
Effects on Products and Value

- Evaluation based on potential product out-turn and market value, rather than volume

- **SYLVER system (BC MFLRORD)**

 https://www2.gov.bc.ca/gov/content/industry/forestry/managing-our-forest-resources/forest-inventory/growth-and-yield-modelling/silviculture-impacts-on-yield-lumber-value-and-economic-return-sylver

- **Wood Fibre Value Simulation Model (CWFC)**

 Li et al. 2016 Landscape Ecology 32:1517

Canadian Wood Fibre Centre

Working together to optimize wood fibre value – creating forest sector solutions with FP Innovations
Wood Fibre Value Simulation Model

TP Pole sites (combined)

- More volume = more product = more value
Wood Fibre Value Simulation Model

- MacKay
- Optimal density range
- Piece size matters if targeting large dimension lumber market

MacKay PCT - Lumber Out-turn

MacKay PCT - Product Value

Canadian Wood Fibre Centre
Working together to optimize wood fibre value – creating forest sector solutions with FPInnovations
Wood Fibre Value Simulation Model

- Gregg63 – Site productivity: High vs. Low
- PCT improves value in low site
PCT Effects on Wood Quality

- Effect of stand density and site factors (site productivity, elevation) on pine wood properties
- Linking wood properties to management
PCT Effects on Wood Quality

Widest spacings:
- had biggest trees (by volume)
Widest spacings:
- had biggest trees (by volume)
- had significant differences in most fibre properties (esp. MoE & Density)
Widest spacings:
- had biggest trees (by volume)
- had significant differences in most fibre properties (esp. MoE & Density)
- may affect proportion of wood meeting grade standards
Operationalizing wood property information

- Linking WFA models to G&Y simulators and decision support tools

- Review report available on the CFS Publication website
 http://cfs.nrcan.gc.ca/pubwarehouse/pdfs/36782.pdf
The current state of integration is low

- many WQ models are available
- few WQ models are linked with G&Y simulators or DSSs
- good integration exists where explicitly planned (e.g., SYLVER)
Wood property models for use in G&Y simulators

- Ring density
 - Lodgepole pine – *Sattler et al. 2015; Peng and Stewart 2013*
 - White Spruce – *Mvolo and Stewart (in progress)*

- Micro-fibril angle
 - Lodgepole pine – *Wang and Stewart 2012*

- Wood Stiffness (*MoE*)
 - Lodgepole Pine – *Wang and Stewart 2013*
 - *White Spruce - Sattler and Stewart 2016*
WQ4MGM: a software module for integrating wood quality in a Growth & Yield simulator

James Stewart (CWFC), Chris Finlay (McGill U.), Derek Sattler (BCMFLRO), Mike Bokalo, Phil Comeau (U. Alberta)
WQ4MGM Structure

- Currently running as stand-alone executables

Data: annual diameter increment by tree

Software: FibreAttributes.exe

Data: fibre attributes by tree

Software: TransitionPoints.exe

Data: mature wood transition point by tree

Mixedwood Growth Model

Canadian Wood Fibre Centre
Working together to optimize wood fibre value – creating forest sector solutions with FPInnovations
Testing the models

means of MOE predicted from ring width data using FibreAttributes.exe

vs.

plot means of observed MOE from the same trees (MacKay lodgepole pine silviculture trial)
Questions?