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ABSTRACT

Despite the central role of microorganisms in biogeochemistry, process models rarely explicitly account
for variation in communities. Here, we use statisticai modeis to address a fundamentai question in
ecosystem ecoiogy: do we need to better understand microbiai communities to accurateiy predict
ecosystem function? Nitrogen (N) cycie process rates and associated gene abundances were measured in
tropicai rainforest soii sampies coiiected in May (eariy wet season) and October (iate wet season). We
used stepwise iinear regressions to examine the expianatory power of edaphic factors and functionai
gene reiative abundances aione and in combination for N-cycie processes, using both our fuii dataset and
seasonai subsets of the data, in our fuii dataset, no modeis using gene abundance data expiained more
variation in process rates than modeis based on edaphic factors aione, and modeis that contained both
edaphic factors and community data did not expiain significantiy more variation in process rates than
edaphic factor modeis. However, when seasonai datasets were examined separateiy, microbiai predictors
enhanced the expianatory power of edaphic predictors on dissimiiatory nitrate reduction to ammonium
and N2O effiux rates during October. Because there was iittie variation in the expianatory power of
microbiai predictors aione between seasonai datasets, our resuits suggest that environmentai factors we
did not measure may be more important in structuring communities and reguiating processes in October
than in May. Thus, temporai dynamics are key to understanding the reiationships between edaphic
factors, microbiai communities and ecosystem function in this system. The simpie statisticai method
presented here can accommodate a variety of data types and shouid heip prioritize what forms of data
may be most usefui in ecosystem modei deveiopment.

© 2013 Eisevier Ltd. Aii rights reserved.

information on microbial communities is rarely explicitly by mathematical equations that apply across diverse environments
considered in large-scale ecosystem models, instead, most such (Todd-Brown et al.,, 2012). However, recent work supports predic-
models implicitly assume that microbial activity can be represented tive relationships between microbial traits and ecosystem function

(Follows et al,, 2007; Allison, 2012), Thus, a fundamental question
for ecosystem ecology remains widely debated: When do we need
to understand details about microbial communities to accurately
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et al,, 2008; Leffet al,, 2012; Petersen et al,, 2012)?
in particular, the added value of data on microbial traits —or the
predictive power of data on microbial community traits above and
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Table 1

Multiple linear regressions were constructed with three sets of predictors for each process, (1) edaphic variables, (2) relative gene abundances, and (3) both edaphic variables

and relative gene abundances. Predictors and statistical results ofbest-fit models are presented in Table 1. Edaphic models versus overall models were compared using ANOVA,

and the results are also presented below.

Process Edaphic model Relative gene abundance
model
Nitrification Predictors NH”_pool, NH”_poorpH, pH amoA

Statistical Results Modelp = 0.007
Adj. R2 = 0.38

In(soiLmoist), pH,

Model p = 0.06
Adj. 2= 0.12
DNRA Predictors napA, narG
NOj_pool, In(soil_moist)*pH
Modelp = 0.001

Adj. =0.49

NOj_pool, pH, In(soiLmoist)

Statistical Results Model p = 0.002

Adj. R* = 0.39

Efflux  Predictors nirS*nosZ, nirS,

nosZ, nirk
Statistical Results Modelp = 0.0008

Adj. =051 Adj. R* = 0.55

beyond that of environmental factors alone — has not yet been
explicitly considered. Schlmel (2001) noted that many process-
based models implicitly consider microorganisms by accounting
for variation In factors that regulate microbial
composition, such as pH (Flerer et al.,, 2007), moisture (Nemergut
et al,, 2010), substrate availability (Legg et al.,, 2012), temperature
(Shade et al.,, 2012) and salinity (Lozupone et al., 2007). Yet, com-
munities are not entirely determined by abiotic variables, as factors
Including dormancy (Jones and Lennon, 2010; Lennon and Jones,
2011), priority effects (Fukaml, 2004), and neutral community as-
sembly processes (Ferrenberg et al., 2013; Nemergut et al.,, 2013)
can also structure communities. The degree to which such factors
affect the composition, functional traits, and activity of a given
microbial community will affect the value of microbial data In
predicting ecosystem processes beyond that of environmental
factors alone.

community

Here, we used statistical models to compare the power of
edaphic factors to predict soil microbial processes with and without
data on microbial traits. Because data on microbial traits can pro-
vide a more accurate representation of functional potential than
data on overall community structure (Polz et al.,, 2006; Burke et al.,
2011), we used quantitative polymerase chain reaction (qPCR) data
on functional genes for this analysis. We focused on genes Involved
In nitrogen (N) cycling as well as measurements of nitrification,
dissimilatory nitrate reduction to ammonium (DNRA), and nitrous
oxide (N20) emission rates determined using 15-N tracers. All data
were generated from soils collected In May (early wet season) and
October (late wet season) from a lowland tropical forest on the Osa
Peninsula, Costa Rica (8°43' N, 83°37' W; Wieder et al, 2013).
Abundances of genes Involved In nitrification (bacterial and

(@) (b)

p=10.04, R*=0.15 " p=10.003,
o
a
4.8 5.0 5.2 5.4 5.6 4.8 5.0
pH

Model p = 0.0008

Overall model Edaphic —overall model

comparison

amoA, NH4_pool, pH*amoA, pH E(19,18) = 3.37
p = 0.08
Modelp = 0.005

Adj. R2 = 0.45

In(soiLmoist), NO3_pool, NO3_poorpH,

pH, narG, pH*In(soil_moist)

Model p = 0.0008

Adj. R* = 0.59

pH, nirS, NO3_poornirK, NO3_pool,

nirK, In(soil_moist)*nosZ, In(soiL moist), nosZ
Modelp = 0.003

Adj. R* = 0.62

E(20,18) = 3.29
p = 0.06

E(19,14) = 2.08
p=0.13

Thaumarchaeota amoA), nitrate reduction (narG and napA), nitrogen
fixation (ni/H), and denltrlficatlon (a likely source of N2O emissions;
nirS, nirK, and nosZ) were used as proxies of microbial trait abun-
dances, as described by Wieder et al. (2013). Edaphic factors,
Including pH, moisture, NO3 and NHj pools, and total C and N
content were collected to describe environmental conditions
(Wieder et al.,, 2013). Because only a subset of the data for which we
had qPCR data were used, some of the relationships Identified here
vary slightly from those presented In Wieder et al. (2013).

Three sets of multiple linear regressions were fit to the data to
explain rates of each N-cycle process; (1) models with edaphic
predictors only; (2) models with gene abundance predictors (narG,
napA, nifH, nirS, nirK, and nosZ relative to bacterial 16S rRNA gene
abundance and amoA relative to bacterial + Thaumarchaeota 16S
rRNA gene abundance) only; and (3) models with both edaphic and
gene relative abundance predictors. Comparisons between edaphic
and overall models were conducted using a partial ANOVA to
compare the sum of squared errors for each model, and to deter-
mine Ifmodels with different predictors were significantly different
(a = 0.05). Finally, we used linear regression to compare the re-
siduals of the best-fit edaphic models and Individual gene relative
abundance predictors to determine If microbial predictors
explained a different proportion of the variance In process than
edaphic factors alone. We performed analyses on samples collected
during May and October separately as well as on the entire dataset
together to examine the effect of temporal dynamics on the re-
lationships between edaphic factors, microbial communities and N-
cycllng processes.

When examining our data across both seasons combined, we
found that edaphic factors yielded more explanatory power than

©
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Fig. 1. Univariate models were constructed evaluate the effect of pH alone on (a) nitrification, (b) DNRA, and (c¢) **N20 efflux rates. pH was the strongest individual edaphic predictor

of all N-cycle processes.
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Fig. 2. The explanatory power ofrelative gene abundances on edaphic model residuals was examined using iinear regressions in our fuii dataset for (a) nitrification, (b) DNRA, and

(c) '"“N20 efflux rates, in panel (a), amo4 abundance is represented by fiiied dots, in panel (b), narG abundance is represented by fiiied dots and nap4 abundance is represented by
unfiiied dots, in panel (c), fiiied dots represent nirS abundance, unfiiied dots represent nirK abundance, and unfiiied triangles represent nosZ abundance. Reiative gene abundances

did not expiain any residual variation in edaphic modeis, suggesting that gene abundances expiained the same portion of variance in process as edaphic predictors.

microbial predictors for nitrification (Adj. R of 0,38 vs, 0,12), but
that the explanatory power of edaphic versus microbial predictors
did not vary for DNRA or N20 emissions (Table 1), The explanatory
power ofboth edaphic and gene abundance predictors on rates was
lowest for nitrification, which could Indicate the presence of un-
measured edaphic factors and/or undetectable nitrification genes
(Hatzenplchler, 2012), In the full dataset, we did not observe any
significant Increase in explanatory power when microbial pre-
dictors were added to edaphic models for any process (Table 1), A
similar relationship was observed by Attard et al, (2011), who
showed that denltrlficatlon rates In an agricultural system were
primarily determined by soil characteristics rather than microbial
community structure or functional composition. Furthermore,
when we considered the effect of each variable Independently, we
found that pH was the strongest Individual predictor of all N-cycle
processes and was correlated with all N-cycllng gene abundances,
suggesting that pH was the most Important factor In determining
both process rates and microbial functional traits across seasons
(Fig, 1), Finally, data on gene relative abundances did not explain
any residual variation In process rates constructed from edaphic
factors alone (Fig, 2),

Interestingly, when we analyzed samples from each season
separately, we found that all models yielded higher explanatory
power In the late wet season than we observed In the full dataset
(Table 2 vs. Table 1), Moreover, Including both functional gene

Table 2

relative abundances and edaphic factors In DNRA and N2O efflux
models significantly Improved our explanatory power relative to
models with only edaphic predictors for the October dataset
(Table 2), Our statistical power was much lower In the early wet
season than In the late wet season (n = 8 and n = 17, respectively),
and only one model — an edaphic model for DNRA rates —
explained significant variation In process rates In May (Adj,
= 0,72); no other model for any process or predictor setyielded a
significant relationship In the May dataset (data not shown).
While some of the observed seasonal differences are undoubt-
edly related to differences In sample size, our analysis shows a
difference between the explanatory power of models for the late
wet season data as compared to the entire dataset. Furthermore,
the explanatory power of microbial predictors alone for process
rates did not vary between our October subset and the full dataset
(Tables 1 and 2), suggesting that a decrease In the Importance of
edaphic factors, not an Increase In the Importance of microbial
communities, drove the added value of microbial data In October,
Together our results suggest that environmental factors that we did
not measure are more Important In structuring communities In the
late wet season than In May, October soils featured higher total
abundances of DNRA and denltrificatlon genes (data not shown),
supporting previous work that shows that anoxic processes are
more Important In this season than Inthe early wet season (Wieder
et al, 2011), It Is possible that soli oxygen or some other

Multiple linear regressions were constructed with three sets of predictors foreach process in Octoberand May, (1) edaphic variables, (2) relative gene abundances, and (3) both
edaphic variables and relative gene abundances. Predictors and statistical results of best-fit models for our October subset are presented in Table 2, as only one model was

significant in May. Edaphic models versus overall models were compared using ANOVA, and the results are also presented below.

Process Edaphic model

abundance model

Nitrification Predictors

Statistical Results Modelp < 0.001
Adj. =0.70 Adj.
DNRA Predictors soil_moist*NO3_pool,
soiLmoist, NOj_pool
Statistical Results Model p < 0.001

Adj. =0.83
pH*NO3 pool, pH,
NOj_pool, soiLmoist

'"NaO Efflux Predictors

Statistical Results Modelp = 0.004

Adj. R2 = 0.60

Relative gene

pH. NH”_pool amoA

Model p = 0.004
Adj. R2 = 0.62

Overall model Edaphic —overall

model comparison

pH*In(amoA), pH, E(14,12) = 1.18
In(amoA), NHt_pool p > 0.20

Model p = 0.06 Modelp < 0.001

= 0.16 Adj. =0.70

napA, narG, napA *narC soil_moist*NO3_pool, E(13,9) = 5.07
soiLmoist, NO3_pool, napA, p = 0.02
narG, napA*narG

Model p = 0.03 Model p < 0.001

Adj. RN = 0.38 Adj. R* = 0.92

nirS*nosZ, nirK, nirS, noZ pH*NO3 pool, pH, NO3_pool, E(12,8) = 6.56
soil_moist*nosZ, soiLmoist, p = 0.01

nosZ, nirK, nirS
Model p < 0.001
Adj. r2 = 0.86
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unmeasured factor (e.g., Ehrenfeld, 2003; Fortuna et al., 2012) is a
more important driver of communities as well as process in
October as compared to May. Thus, had we measured all potential
regulatory edaphic factors, the added value of microbiai data in
October may not have been significant.

Our results suggest that the added value of microbiai data for
explaining function over edaphic factors aione varies seasonally
and by N-cycie process in this tropical rainforest ecosystem. Broad
conclusions on the need for directly modeling community structure
will require further examination across ecosystem types and pro-
cesses, at a range of temporal scales. Specificaiiy, ecosystem modeis
may need to incorporate seasonai changes in the drivers of pro-
cesses to most accurately predict ecosystem function. Thus, the
simple statistical method presented here, which can be readily
extended to accommodate a wide variety of ecological data across
spatial and temporai scales, can be used to evaluate the utility of
data types in disparate ecosystems.
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