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Dynamic phenomena in nature are becoming increasingly 
recognized as nonlinear1. That is, dynamic systems are state 
dependent and cannot be modelled by the sum of their 

non-interacting, additive parts. As an example, animal population 
dynamics are suspected to be nonlinear because of the complexity 
and interrelatedness of variables that influence populations and the 
regularity in which some animal populations fluctuate2–4. The search 
for dynamic complexity (defined herein as nonlinearity and high 
dimensionality, that is, a high number of interacting processes that 
produce observed dynamics)5 in animals began with accounts of cha-
otic dynamics in model organisms and has since expanded to include 
some natural systems including marine ecosystems4,6–9. However, this 
search has been hampered by the amount of data required to ade-
quately analyse time series4, and how prevalent dynamic complexity 
is in animal population dynamics is unknown. This has led some to 
conclude that complex dynamics may be rare in animals9,10.

Despite evidence for dynamic complexity, fluctuations in animal 
abundances are thought to be largely explained by low-dimensional, 
nonlinear dynamics11. Complex dynamics were first explored with 
simple population models, such as the discrete logistic equation 
Ntþ1 ¼ Nterð1�

Nt
K Þ

� �

I

, which shows increasing nonlinearity as the 
intrinsic growth rate r increases5,7,12. Prevailing theory has since sug-
gested that the demography necessary for nonlinear dynamics may 
be present in smaller, faster-reproducing animals with non-overlap-
ping generations7,8,12. Nonlinear dynamics may occur for other rea-
sons, including deterministic, multiplicative interactions between 
species or other abiotic/biotic variables4,13 and stochastic environ-
mental noise13,14. For example, Dixon et al.13 found that nonlinear 
episodic fluctuations in a larval damselfish population resulted 
from both deterministic (lunar phases) and stochastic processes (for 
example, wind direction). Similarly, Hsieh et al.4 found evidence that 
stochastic physical forcing combines with low-dimensional, nonlin-
ear and deterministic biological variables to govern marine ecosys-
tems in the North Pacific Ocean. Therefore, we hypothesize that 
nonlinear population dynamics are driven by: (1a) high intrinsic  

growth rate; (1b) high dimensionality; (1c) stochastic noise; and 
(1d) that these dynamics are shared by animals of similar taxonomic 
classification.

In contrast to the quest for nonlinearity in ecology, there has 
been little research exploring the factors that cause higher dimen-
sionality in animal time series. Some have suggested that marine 
ecosystems, especially fisheries, are potentially high-dimensional 
due to the added dimensions of human intervention via fishing 
effort (for example, fisheries management and market prices)6,15–17. 
In contrast, some trophic cascade researchers have suggested that 
the paucity of documented cascades in terrestrial ecosystems are 
due to their reticulate, high-dimensional nature18,19. Despite this, 
high-dimensional dynamics are thought to be rare in animal popu-
lations11. This is supported in part by the pervasiveness of only a 
few strong interactions found embedded in many weak interactions 
in the analyses of natural food webs20,21. Still we hypothesize that 
high-dimensional dynamics are more prevalent among: (2a) faster-
reproducing animals, like insects and fish, which may be prone to 
numerous, complex relationships within their dynamic systems due 
to demography6,22; (2b) lower-level consumers (for example, her-
bivores), which have been found to have many strong interactions 
compared with higher trophic levels23,24; and (2c) that these dynam-
ics are common across taxonomically similar species.

Despite prior research, it is unclear if the aforementioned fac-
tors drive complex population dynamics writ large. Furthermore, 
these complex dynamics are necessary for abrupt and unexpected 
ecological shifts, like transitions between equilibria, steep declines 
in abundance and local extinctions25–27. If certain taxa are capable of 
producing complex dynamics, this may make the long-term predic-
tion of their populations difficult, potentially limiting precaution-
ary management strategies in the face of increasing perturbations4,6. 
Broadly, more complex dynamics are thought to be more difficult 
to predict due to a variety of factors that make time series more 
fluctuating and random in nature28,29. Therefore, we expect that the 
following factors will make time series more difficult to predict: (3a) 
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faster-reproducing species, which due to demography often have 
rapidly fluctuating populations; (3b) nonlinearity, which is known 
to make animal populations more difficult to predict28,30; and (3c) 
that taxonomically similar species will have related predictability 
(hypotheses for factors affecting predictability).

In the present study, we carried out a large-scale, cross-taxa test 
for dynamic complexity and predictability in animal population 
dynamics. We collected animal time series from a variety of sources, 
including global databases and grey literature (see Methods). We 
filtered these datasets according to a strict regimen (Supplementary 
Information, section 2), including only those with ≥30 time steps 
due to model constraints30. This narrowed our final dataset to 747 
time series consisting of 228 animal species, including 75 birds, 49 
insects, 54 bony fish and 50 mammals.

We then used nonlinear forecasting14,31 to determine the dimen-
sionality (E, a relative index for the number of strongly interact-
ing variables), nonlinearity (θ, state-dependence) and predictability 
(ρ, forecast skill) of these time series. These innovative methods, 
known collectively as empirical dynamic modelling (EDM), use 
state–space population reconstruction through lagged coordinate 
embedding of time series (see Methods)14,31,32. EDM was developed 
specifically for short and noisy time series30 and can reliably identify 
and predict complex dynamics if present6,14,31. These methods have 
been used previously to explore complex dynamics and predictabil-
ity across taxa in large datasets for marine fisheries6,17 and in plank-
tonic ecosystems33. Yet, no study has conducted these tests across a 
wide range of animal taxa.

We used a two-step process that determined the best parameters 
using out-of-sample forecast skill (ρ): (1) simplex projection, a near-
est neighbours algorithm31, to calculate E, the embedding dimension, 
which is the number of consecutive time lags needed to reconstruct 
the state–space and is an index of dimensionality31; and (2) sequen-
tially weighted global linear maps (S-maps) with the best E from step 
1 to calculate the local weighting parameter θ, where larger values of 
θ indicate higher nonlinearity14. Time series were then classified as 
nonlinear if there was a significant reduction in error in prediction 
from a linear to a nonlinear model30 using a randomization procedure 
(see Methods)34. Alternatively, time series that were not significant 
were classified as linear-stochastic, either because the dynamics were 
best modelled by a stable deterministic system or because they can-
not be distinguished from a solely stochastic process (see Methods)6. 
We then chose the respective parameter (E and θ) that produced the 
highest forecast skill defined as the correlation between the actual 
and predicted time series (see Methods). Models of time series for E 
and θ that were not significantly correlated with the actual time series 
were categorized as ‘not predictable’ and excluded from the statistical 
analysis of dimensionality and nonlinearity (see Methods)6.

We then used E, θ and ρ as response variables in post-hoc analy-
ses to test our hypotheses for factors affecting nonlinearity (hypoth-
eses 1a–d), dimensionality (hypotheses 2a–c) and predictability 
(hypotheses 3a–c), respectively. We constructed a phylogenetic tree 
to explore if dynamic complexity was related to evolutionary rela-
tionships among species (hypotheses 1d, 2c and 3c). We collated 
life-history traits (for example, lifespan) for each species to capture 
differences in demographics35,36 from a slow-to-fast continuum, to 
test the hypotheses that life history and growth rate (see Methods) 
affect dynamic complexity (hypotheses 1b, 2a and 3a). We collected 
information at the trophic level for each species to test the hypoth-
esis that trophic interactions affect dimensionality (hypothesis 2b). 
Lastly, we accounted for confounding differences between time 
series due to factors such as time series length, generation time and 
sampling methodology using nuisance variables (see Methods).

Results
Nonlinearity. We show that nonlinear dynamics are common 
across a wide variety of animal taxa and are related to life-history 

strategies, supporting past evidence for some of these differences in 
ecological theory8 and literature for marine ecosystems4,6 (Fig. 1a). 
Our best model using the Akaike’s information criterion (AIC) indi-
cated that nonlinear dynamics broadly differed between taxonomic 
class, with 74% of insect species, 58% of mammals, 49% of bony fish 
and 35% of birds showing nonlinear dynamics (Fig. 1a). Time series 
with faster life-history traits (that is, principal components axis of 
shorter body length, minimum age of first reproduction and lon-
gevity; see Methods and Extended Data Fig. 1) were 0.9 times more 
likely to display nonlinear dynamics (supporting hypothesis 1a). 
This result lends support to the prediction that nonlinear dynam-
ics occur in response to elevated growth rate, which has been theo-
retically and experimentally shown to cause a higher probability of 
transitions between dynamical regimes5,7,11,12,37. Additionally, time 
series with less stochastic noise (1 − ρ (refs. 6,28); more predictable) 
were 1.7 times more likely to be nonlinear, contrary to our hypothe-
sis (1c; Extended Data Fig. 2). Lastly, time series with higher dimen-
sionality were 0.9 times more likely to be nonlinear, supporting the 
hypothesis that an increasing number biotic/abiotic interactions 
increase nonlinearity (1b; Extended Data Fig. 2) (refs. 4,13).

The nonlinear signal appeared more nuanced when time series 
were classified by taxonomic order; however, we could not test for 
the significance of taxonomic order due to the small sample size 
(Fig. 1b and Extended Data Fig. 3). For example, rodents (61%) 
are moderately nonlinear, preliminarily suggesting that this may 
be the dynamic cause of known fluctuations in these animals38 in 
contrast to relatively linear carnivores (40%). Hemipterans, pri-
marily comprised of aphid time series (29 species; 88% of insect 
time series), were highly nonlinear (74%), potentially due to their 
parthenogenetic life history, which is characteristic of many aphid 
populations22. Similar to past research33, there was slight support 
that nonlinearity was more probably detected in longer time series 
(Extended Data Fig. 2). We suggest that nonlinear dynamics in ani-
mals are primarily driven by their life history and their complex, 
interconnected relationship with other species, surrounding habitat 
and environment.

Dimensionality. Median dimensionality was similar across taxo-
nomic classes and unrelated to phylogeny (Fig. 2). This supports a 
common theory that many population fluctuations can be explained 
by low-dimensional, nonlinear dynamics11,30. However, we show that 
high-dimensional, nonlinear dynamics still pervade some animal 
population dynamics (Fig. 2). Still, we caution against overinterpre-
tation of the values of dimensionality, since these are only heuristic 
values that describe the complexity of the system or the number 
of interacting processes that created these dynamics6,31,39. Animals 
that were smaller and faster-reproducing had higher dimensionality 
(supporting hypothesis 2a; Extended Data Fig. 4), suggesting that 
these species may strongly interact with more abiotic/biotic vari-
ables. We were also more likely to find higher dimensionality in lon-
ger time series (Extended Data Fig. 4). Contrary to our hypotheses 
and previous theory23, we found that dimensionality was not related 
to taxonomic class or trophic level (hypotheses 2b and 2c; Extended 
Data Fig. 4), indicating that animals across taxa, not only marine 
organisms, may be subject to high numbers of interactions.

Predictability. We found that 86% of time series were predictable 
1 time step into the future. Predictability was related to taxonomic 
class (supporting hypothesis 3c), with insects (96%) being very pre-
dictable, followed by bony fish (78%), mammals (57%) and birds 
(55%). In contrast to our hypothesis (3b), we found a higher forecast 
skill for time series with nonlinear dynamics than those with lin-
ear-stochastic dynamics (or non-predictable dynamics) (Fig. 3 and 
Extended Data Fig. 5). Animals with faster life-history traits had 
dynamics that were more predictable (Extended Data Fig. 5), con-
trary to our hypothesis (3a) and past results with similar modelling 
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techniques40. As the number of time steps into the future increased, 
predictability declined exponentially, with one-third of time series 
predictable three time steps into the future (Table 1). This indicates 
that medium- or long-term (>2 years) prediction of nonlinear pop-
ulation dynamics may be limited and that only short-term predic-
tions are attainable with these methods6,14.

As the number of time steps into the future increased, time series 
with nonlinear dynamics declined exponentially in forecast skill6,14. 
Time series with linear-stochastic dynamics had a similar decline 
in forecast skill, yet overall they were not as predictable as nonlin-
ear dynamics. Similarly, this has been found in a large-scale analysis 
of fisheries time series using nonlinear forecasting6; it may indicate 
poorly resolved attractors and, therefore, strong linear-stochastic 
noise (average 1 − ρ = 0.47; Fig. 3). This suggests that no matter 
the species studied, the underlying systems may be hard to pre-
dict with these methods due to high-dimensional nonlinearity or 
linear stochasticity. In fact, these results mirror recent doubts over 
the feasibility of accurately predicting some complex ecological sys-
tems41,42. Despite these difficulties, we suggest that calculating the 
dimensionality and nonlinearity of time series may facilitate a better 
understanding of animal population dynamics and help build better 
models for prediction4,14,30,31. For example, if a system is governed 
deterministically by nonlinear, low-dimensional dynamics, a simple 
mechanistic model may capture the behaviour well; monitoring 
these few input variables in an ecosystem may then be realistic30. 
However, if a system is governed deterministically by high-dimen-
sional, nonlinear dynamics or stochastically by high-dimensional 

linear dynamics, the aforementioned models may fail and require 
a statistical autoregressive model or state–space reconstruction30,31. 
As such, we and others6,30 suggest using nonlinear forecasting to 
understand the complexity and predictability of a system, thereby 
building better-informed models.

Broader implications. We found that nonlinear dynamics were 
ubiquitous across a wide variety of animal taxa and related to 
faster-reproducing life-history traits. Previously, complex dynamic 
behaviours (for example, chaos) were met with scepticism and some 
have suggested that they are probably rare in animals9,10 or that only 
insects have the demography to allow these dynamics to emerge8,22. 
Additionally, this bias is reflected in the fact that linear, equilib-
rium-based model assumptions are the standard for most models 
of animal population management and conservation. However, our 
results suggest that nonlinear dynamics may be more common than 
previously thought; as others have suggested16,28,29, a methodological 
shift towards nonlinear, state–space models may be necessary for a 
wide variety of animals.

Prior research using similar datasets (for example, the Global 
Population Dynamics Database (GPDD)) have ignored observational 
uncertainty in animal population estimates, which has been shown to 
bias tests and estimates of ecological processes (for example, density 
dependence) leading to poor inference43. To account for uncertainty, 
we have eliminated potentially noisy datasets using informed filtering 
criteria (see Supplementary Information). Furthermore, EDM has 
been shown to be robust against observational noise44; regularization 
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schemes are being developed to extend these methods to overcome 
sensitivity to high process noise45. It is difficult to separate the rela-
tive contribution of observational versus process error in time series 
datasets and estimates of observational error are often imprecise43. 

Therefore, future work should be done to determine which error 
terms (observational versus process) dominate in animal time series 
(for example, see Ahrestani et al.46) and how to account for these in 
modelling frameworks to lead to strong ecological inference.
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Sustained oscillations, aperiodic behaviour, alternative stable 
states and critical transitions have all been implicated as symptoms 
of nonlinear dynamics25–27. For example, regime shifts, where dra-
matic changes occur in the structure and function of an ecosystem, 
are known to cause ecological catastrophes27 like the dominance of 
macroalgae on coral reefs following climate-induced bleaching47. 
Our findings indicate that the nonlinear dynamics that are neces-
sary to cause catastrophic shifts may be present in a wide variety 
of animal taxa. These dynamics do not mean that regime shifts are 
inevitable; however, simulations and empirical data have shown 
that that elevated nonlinearity can indicate if regime shifts may 
occur4,6,25,27. Additionally, nonlinear dynamics have been linked to 
slower, less dramatic transitions, such as local extinction in dete-
riorating environments48. Yet, in the face of extreme perturbations, 
such as climate change, anthropogenic stress or inconsistent man-
agement (for example, resource management cycles49), critical tran-
sitions are more likely to occur, often well before the bifurcation 
point26,27. In consideration of our results and others4,6,49, we suggest 
that a careful, precautionary and adaptive management strategy is 
essential for all animals.

Methods
Data collection. Population dynamics time series data were compiled from the 
GPDD, other databases and grey literature (Supplementary Information, section 
1). Similar to past applications of GPDD data36,50, we conducted a strict filtering 
criteria due to inconsistencies in time series, such as long strings of repeating, non-
unique values that have been shown to limit the classification of nonlinearity and 
prediction of time series33 (Supplementary Information, section 1 and Extended 
Data Fig. 6). This narrowed our final dataset to 747 time series consisting of 228 
animal species, including 75 bird species, 49 insects, 54 bony fish and 50 mammals. 
Datasets were limited to ≥30 population counts per time series due to modelling 
constraints30, with a median of 47.5 and range of 30–275 (Extended Data Fig. 7). 
Time series were first-differenced (Δx = xt − xt−1) and standardized to reduce short-
term autocorrelation, preserve stationarity and allow the comparison of datasets28.

We created a full phylogenetic tree for species in our dataset from a 
comprehensive supertree, the Open Tree of Life51, using the rotl52 package (v3.0.10). 
We collected species-specific life-history traits from Brook et al.36 and independent 
sources (for example, https://www.demogr.mpg.de/longevityrecords/0203.htm, 
fishbase.org; audubon.org) for each of the 232 species. These traits included: (1) 
maximum body size (length in mm); (2) average age at first reproduction (months); 
(3) longevity (maximum age attained in the wild in months); and (4) fertility 
(number of young per year). Due to high multicollinearity between life-history traits, 
we used principal component analysis to produce predictors from the two principal 
components with the highest eigenvalues (explaining 97.1% of the variation in the 
dataset). Additionally, we categorized each species according to trophic level36.

Nonlinear forecasting. We used two separate nonlinear forecasting models 
developed for short time series using state–space reconstruction through lagged 
coordinate embedding (Takens’ theorem; for a short explanation, see https://youtu.
be/fevurdpiRYg). Takens’ theorem proves that the system dynamics of a single 
time series can be represented by substituting the time lags of the same time series. 
All nonlinear forecasting was conducted in R53 (v.3.5.0) using the package rEDM 
v.0.7.254. First, we used simplex projection to calculate the embedding dimension 
(E), which is the number of consecutive time lags necessary to reconstruct the 
system state–space using lagged coordinates. In a sense, E provides an index 

of the dimensionality or the number of interacting variables of the underlying 
dynamic system for each time series31. Second, we classified the system dynamics 
of each time series as linear or nonlinear using sequentially weighted global linear 
maps (S-maps)14. S-maps are akin to linear autoregressive models where the 
model coefficients of the current state of the system from which the prediction 
is being made (‘predictee’) depend on where it is located in an E-dimensional 
embedding4,14. When θ = 0, this represents a global linear model for all predictees 
regardless of location in state–space, and the model reduces to an autoregressive 
model of order E. When θ > 0, this represents a local nonlinear model where 
neighbours that are closer to the point to be predicted are given stronger weighting, 
creating a locally weighted map. Systems are considered to be nonlinear if greater 
weighting results in a better model than equally weighting all the data14. For 
simplex projection, we iterated embedding dimension (E) from 1–10, identified 
the best E, then applied it with S-maps and varied nonlinear tuning parameter 
(θ) from 0–8, respectively for each time series. Time series were then classified as 
nonlinear if the change in mean absolute error (MAE) from a linear to nonlinear 
model (ΔMAE = MAEθ=0 − MAEmin) was positive and significant at P ≤ 0.05 
(ref. 30). Time series that failed this test were classified as linear-stochastic either 
because the dynamics were best modelled by a stable deterministic system or 
because they could not be distinguished from a solely stochastic process6. To 
determine the P value, we ran a randomization procedure where we calculated 
ΔMAE for the original time series, then generated 1,000 phase-randomized 
surrogates34, which preserve the basic statistical properties of the time series like 
autocorrelation but introduce randomization, thereby creating a null distribution 
ΔMAE to compare our original ΔMAE against30. We then chose the respective 
parameter (E and θ), which produced the highest forecast skill, defined as the 
Pearson’s correlation coefficient between the actual and predicted time series via 
leave-one-out cross-validation14,31. Models of time series for E and θ that did not 
have a significant Pearson’s product-moment correlation coefficient at P ≤ 0.05 
were categorized as non-predictable and excluded from the statistical analysis of 
dimensionality and nonlinearity6. Although the variables E, θ and ρ are useful 
descriptions of the reconstruction of the original dynamic system, we caution 
against overinterpretation of these variables or the cause versus effect relationship 
between them33.

To quantify the potential predictability and noise of our datasets, we analysed 
the nonlinear forecasts from S-maps as a function of how many time steps in the 
future (tp = 1–5) the forecast skill persisted6,14. We then calculated the maximum ρ 
at tp = 1 to understand the amount of deterministic signal and noise (1 − ρ) present 
in each time series. In sum, our final dataset included 747 time series of 228 
species, with 642 time series of 163 species being assigned as significant at P ≤ 0.05 
and therefore predictable by the Pearson’s product-moment correlation coefficient. 
For examples of these time series, see Extended Data Fig. 8.

Statistical analysis. Due to overrepresentation of well-studied species (see 
Supplementary Information section 1), we randomly chose a single time series 
for each species for subsequent analyses. Subsequent random sampling did not 
change our results. We analysed the importance of phylogenetic relationship 
in explaining system dimensionality, nonlinearity and model forecast skill 
by creating a covariance matrix of the evolutionary relationships between all 
species in our dataset. We analysed dimensionality and forecast skill using 
phylogenetic generalized least squares with expected covariance under a Brownian 
model, finding no significant phylogenetic relationship (λ = 0.001 and −0.055, 
respectively)55. Because nonlinearity was a binomial variable, we analysed the 
importance of phylogeny using the binaryPGLMM function in the ape55 package 
(v.5.0), finding no significant phylogenetic relationship (s2 = 0.2563, P = 0.1228).

After removing phylogenetic covariance, we analysed the relation of taxonomic 
classification, trophic level and life history to dimensionality, the detection of 
nonlinear dynamics and model forecast skill using generalized linear models. The 
variable E, an ordinal categorical variable, was analysed using a cumulative logit 
model (n = 157). We attempted to analyse nonlinearity using a logit link function 
with a binomial distribution (n = 157). However, due to complete separation in the 
variable ‘data type’, we instead used Bayesian analysis with a non-informative Cauchy 
prior56 for each coefficient using the package arm v.1.10-1(ref. 57). The variable ρ was 
analysed using an identity link function and Gaussian distribution (n = 224).

We conducted backwards stepwise model selection based on the AIC, deleting 
model terms until the lowest possible AIC was achieved. To analyse nonlinearity, 
we evaluated model selection using the Bayesian information criterion and AIC, 
which subsequently gave the same results. The maximal models considered were 
the following: (1) E ≈ TC + PC1 + PC2 + trophic + N + CV + G + data type + data 
type × CV; (2) nonlinear ≈ TC + PC1 + PC2 + E + ρ + N + CV + G + data type + data 
type × CV; (3) ρ ≈ TC + PC1 + PC2 + predict category + N + CV + G + data 
type + data type × CV. Predictor variables that were part of our hypotheses, in 
addition to E and ρ, were the following: TC was a categorical variable representing 
taxonomic class. PC1 represented the first principal component (72.2% of 
explained variation) of the principal component analysis of life-history traits, 
with positive values representing shorter body length, minimum age of first 
reproduction and longevity. PC2 represented the second principal component 
(24.9% of explained variation) of the principal component analysis, with positive 
values representing less fertility (Extended Data Fig. 1). ‘Trophic’ was a categorical 

Table 1 | Proportion of animal time series with predictable 
forecasts as time steps in the future increase

Class/
superclass

Time 
step 1

Time 
step 2

Time 
step 3

Time 
step 4

Time 
step 5

Aves 0.548 0.140 0.086 0.054 0.075

Insecta 0.960 0.602 0.373 0.373 0.375

Mammalia 0.571 0.286 0.111 0.143 0.143

Osteichthyes 0.779 0.191 0.103 0.103 0.118

Total 0.859 0.481 0.290 0.290 0.331

Time series were categorized as ‘predictable’ if the Pearson product-moment correlation coefficient 
of the leave-one-out cross-validation was statistically significant (P ≤ 0.05).
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variable representing trophic level, including herbivores, detritivores, carnivores 
and omnivores. ‘Predict category’ was a categorical variable defining if a time 
series was classified as non-predictable, predictable linear or predictable nonlinear. 
Variables that were used to control for inconsistencies between our time series 
were the following: N was the number of values in a time series and was included 
as a control because nonlinear dynamics and dimensionality may be obscured 
when time series are too short6,30. CV represented the coefficient of variation 
calculated from first-differenced time series to control for higher-level variability 
in our time series. G was equal to the number of generations monitored in each 
census (time series length/minimum age at first reproduction) to control for 
the temporal mismatch between generation length and sampling frequency35. 
However, due to lack of data, we were unable to account for differences in spatial 
scales of sampling, which may cause differences in dependent variables between 
animal groups sampled. ‘Data type’ was a categorical variable with six categories 
(for example, breeding individuals, spawning biomass) to control for the different 
units and sampling methods used to collect the abundance data. Furthermore, the 
interaction between data type and CV was used to control for statistical artefacts 
in the time series (for example, harvested populations may be more variable)6. The 
model selection results are included in Supplementary Tables 1–3.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data needed to reproduce the analysis can be found on Github (https://doi.
org/10.5281/zenodo.3470260).

Code availability
The code needed to reproduce the analysis can be found on Github (https://doi.
org/10.5281/zenodo.3470260).
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Extended Data Fig. 1 | Principal components analysis of life-history traits. PC1 explains 72.2% of variation in our data (axes 1, 2, and 3), representing 
body length (mm), minimum age at first reproduction (months), and lifespan (months), respectively. PC2 explains 24.9% of variation in our data (axis 4), 
representing fertility (# of young per year). Colored ellipses represent 95% probability that data for each taxonomic classification fall within the ellipse.
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Extended Data Fig. 2 | Final model results of nonlinearity. E is the embedding dimensionality, ρ is the forecast skill, and CV is the coefficient of variation of 
a time-series. An asterisk indicates coefficients that were significant at P ≤ 0.05.
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Extended Data Fig. 3 | Animal time-series with linear, nonlinear, or non-predictable population dynamics. a, Animal time-series arranged by taxonomic 
class. b, Animal time-series were arranged by taxonomic order where sample size ≥ 10. Bolded numbers show sample size.
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Extended Data Fig. 4 | Final model results of dimensionality (E). PC1 is the first principal component of life history traits, representing a combination of 
body length (mm), minimum age of first reproduction (months), and longevity (months) of animals (positive coefficient estimates = faster life histories; 
Extended Data Fig. 1). N is the time-series length. An asterisk indicates coefficients that were significant at P ≤ 0.05.
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Extended Data Fig. 5 | Final model results of forecast skill (ρ). PC1 is the first principal component of life history traits, representing a combination of 
body length (mm), minimum age of first reproduction (months), and longevity (months) of animals. Linear, nonlinear, and not predictable represent the 
categorization of population dynamics. CV is the coefficient of variation of a time-series. An asterisk indicates coefficients that were significant at P ≤ 0.05.
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Extended Data Fig. 6 | Repeating zeroes in datasets do not change likelihood of nonlinearity. Proportion of linearity/nonlinearity in animal time-series, 
arranged by taxonomic class. Due to some time-series having long sequences of zeroes, we filtered out time-series with strings of zeroes. a, Time-series 
with no filtering. b, Strings of zeroes > 20 filtered. c, Strings of zeroes > 5 filtered. d, Strings of zeroes > 1 filtered.
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Extended Data Fig. 7 | Summary statistics for animal time-series by taxonomic class. Median time-series length represents median number of time-
series data for the final dataset. Predictable datasets were categorized if the Pearson correlation coefficient of out-of-sample prediction was significant at 
P ≤ 0.05.
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Extended Data Fig. 8 | Examples of predictable time-series. a, Standardized abundance of woodcock (Scolopax minor) over time. b, Standardized 
abundance of grey red-backed voles (Myodes rufocanus) over time. c, Standardized abundance of dover soles (Solea solea) over time. d, Standardized 
abundance of woolly beech aphids (Phyllaphis fagi) over time. Grey lines represent the observed abundance, blue lines represent predicted abundance.
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