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Understanding how predators affect prey populations is a fundamental goal for ecolo-
gists and wildlife managers. A well-known example of regulation by predators is the 
predator pit, where two alternative stable states exist and prey can be held at a low 
density equilibrium by predation if they are unable to pass the threshold needed to 
attain a high density equilibrium. While empirical evidence for predator pits exists, 
deterministic models of predator–prey dynamics with realistic parameters suggest they 
should not occur in these systems. Because stochasticity can fundamentally change 
the dynamics of deterministic models, we investigated if incorporating stochastic-
ity in predation rates would change the dynamics of deterministic models and allow 
predator pits to emerge. Based on realistic parameters from an elk–wolf system, we 
found predator pits were predicted only when stochasticity was included in the model. 
Predator pits emerged in systems with highly stochastic predation and high carrying 
capacities, but as carrying capacity decreased, low density equilibria with a high likeli-
hood of extinction became more prevalent. We found that incorporating stochasticity 
is essential to fully understand alternative stable states in ecological systems, and due 
to the interaction between top–down and bottom–up effects on prey populations, 
habitat management and predator control could help prey to be resilient to predation 
stochasticity.

Keywords: alternative stable states, carnivores, population dynamics, predator 
control, ungulates, wildlife management

Introduction

Predation can be an important factor affecting prey populations. A simple model for 
the effect of predation is where density-dependent predation causes prey abundance to 
decline to a single low density equilibrium (Fig. 1a). Another well-known theoretical 
example of regulation by predation is the predator pit (Fig. 1b). A predator pit occurs 
when two alternative equilibria (Holling 1973, May 1977) exist and prey can be held at 
a low density equilibrium, unable to pass a critical threshold (‘the pit’) needed to reach 
the higher density equilibrium (Messier 1994, Sinclair and Pech 1996). However, if 
prey can grow to surpass this critical threshold, both predator and prey will be able to 
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maintain high density equilibria (Sinclair and Pech 1996). 
Predator pits are thought to occur when predators main-
tain prey at low densities via density-dependent predation 
(Supporting information), whereas at higher prey densities, 
predation becomes inversely density-dependent (depensa-
tory) due to factors such as predator satiation, handling time 
and territoriality (Holling 1959, Messier 1994, Sinclair and 
Pech 1996). Theoretically, predator pits have been shown to 
occur in complex models such as those with non-monotonic 
functional responses, alternative prey, feedback loops in 
trophic structure and age-structured predation (May 1977, 
Bakun 2006, Smout et al. 2010, Pavlová and Berec 2012). 
For example, Pavlová and Berec (2012) showed that predator 
pits may occur if generalist predators only consume one age 
class of prey with a type II functional response. Predator pits 
are of concern to applied ecologists, as they present a pos-
sible reason for the observed lack of recovery of animals after 
rapid declines, or low densities of prey species in apparently 
productive habitat (Courchamp et al. 2008).

In addition to predator–prey models predicting the exis-
tence of predator pits, there is some empirical evidence that 
predator pits occur in natural populations. For example, the 
Alaska Dept of Fish and Game controlled gray wolf Canis 
lupus populations in interior Alaska to increase moose Alces 
alces and caribou Rangifer tarandus populations for harvest 
(Boertje et al. 1996). After predator control ended and wolf 
populations rebounded, prey populations still maintained 
high densities, consistent with the prediction of predator pit 
dynamics (National Research Council 1997). Others have 
found some possible evidence for predator pits (Gascoigne 
and Lipcius 2004, Regelin et al. 2005, Pimenov et al. 2015 
and citations therein), however few have experimentally tested 

if prey remain at high densities once predators rebound to 
high densities, making it difficult to differentiate from simple 
top–down predation. In light of these empirical examples and 
others, some wildlife management agencies have managed 
prey under the explicit or implicit assumption that preda-
tor pits are the major regulating mechanism (Boertje  et  al. 
1996, Regelin et al. 2005). Despite the existence of empiri-
cal examples, experimental difficulties coupled with complex 
theoretical mechanisms and similar predictions between sim-
ple top–down predation and predator pits (Fig. 1) have led 
some to conclude that predator pits may not exist in nature 
(Messier 1994, Oksanen et al. 2001, Andersen et al. 2006).

Bottom–up factors may contribute to the existence of 
predator pits as much as the nature and shape of preda-
tion due to the effect of primary productivity on the prey 
growth response. Analogously, alternative stable states (e.g. 
consumer–resource pits) have been found to become more 
likely at higher carrying capacities (Van Nes and Scheffer 
2005). This may be because higher carrying capacities lead 
to increased energy flux in the system, making predator–prey 
interactions more top heavy and less stable (Rip and Mccann 
2011), and therefore increasing the potential for alternative 
stable states. While there is no information on how bot-
tom–up drivers affect predator pits, examples from simple 
top–down predation may help to inform these effects. For 
example, across systems with one equilibrium under preda-
tion, Melis et al. (2009) found that predators had a greater 
impact on roe deer Capreolus capreolus populations in habi-
tat with low primary productivity. Moreover, Messier (1994) 
built theoretical models fit to empirical data of wolf–moose 
predator–prey dynamics and showed that wolf popula-
tions drive moose populations to low density equilibria, not 

Figure 1. Two conceptual models of prey population regulation. The black lines represent growth rate of prey per density without predation 
and the red lines represent growth rate of prey per density with predation. When the growth curves cross the dashed black line (growth rate 
of zero), an equilibrium condition is possible (dashed circles). Arrows pointed towards the circle represent a stable equilibrium, whereas 
arrows pointed away from the circle represent an unstable equilibrium. (a) Shows that predation can reduce the stable equilibrium to a lower 
density at K1. (b) Shows that predation can reduce the local minima in (a) below the growth rate of zero, resulting in a ‘predator pit’, where 
an unstable equilibrium, KU, is separated by high and low density stable equilibria, K2 and K3, respectively. If prey density can increase past 
KU, populations will grow to the higher density stable equilibrium, K3. Stochasticity may allow the growth curve in (a) to pass below the 
growth rate of zero, similar to (b), leading to a predator pit.
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predator pits, in poorly productive habitat (i.e. low carry-
ing capacity). These examples show that primary productiv-
ity can modify the prey growth response when there is one 
equilibrium, and therefore it is feasible that predator pits (i.e. 
existence of multiple alternative equilibria) may be modified 
similarly.

To date, deterministic models have been typically used to 
search for predator pit dynamics (Pavlová and Berec 2012). 
However, when realistic parameters are used in these models, 
even for systems that have demonstrated the likely existence 
of a predator pit (Boertje  et  al. 1996), alternative equilib-
ria are not predicted (Messier 1994; Results). To reconcile 
an apparent discrepancy between empirical observations 
and theoretical models, we were interested in whether mod-
els that incorporated stochasticity in predation rates would 
change the predictions relative to deterministic models and 
allow predator pits to emerge. Indeed, research on other con-
sumer–resource systems have shown that when stochasticity 
is added to deterministic models, these processes can blend 
to produce emergent dynamics not found in solely deter-
ministic models (Dennis and Costantino 1988, Sharma et al. 
2015, Abbott and Nolting 2017). However, these dynamics 
in higher trophic levels remain largely unexplored. As is the 
case for many biological processes, predation has been shown 
to be a stochastic process, driven by predators ranging from 
large carnivores to piscivorous fish (DeAngelis  et  al. 1984, 
Festa-Bianchet et al. 2006, Almaraz and Oro 2011). The pre-
dation rate can vary due to abiotic factors such as weather 
(Post and Stenseth 1998, Hebblewhite 2005, Hegel  et  al. 
2010, Wilmers et al. 2020) or biotic factors such as individ-
ual specialization of predators on prey (Festa-Bianchet et al. 
2006). In our study, we explored the role of stochastic weather 
events in mediating predator–prey interactions from both 
the bottom–up (e.g. carrying capacity) by impacting the prey 
growth rate and from the top–down (e.g. stochastic preda-
tion) by impacting predator behavior. For example, from the 
bottom–up, as elk Cervus canadensis nutritional conditions 
decline over the winter season, wolf Canis lupus kill rates on 
elk increase (Metz  et  al. 2012). From the top–down, deep 
snow leads to higher carnivore predation rates on ungulate 
populations (Post and Stenseth 1998, Hebblewhite 2005, 
Hegel et al. 2010, Wilmers et al. 2020).

Here, we used stochastic population growth models to 
investigate how stochastic predation and the effect of changes 
in carrying capacity influence population dynamics via the 
likelihood of predator pits and local extinction. We devel-
oped models using realistic parameter estimates from large 
mammal predator–prey systems because of the relevance of 
the predator pit hypothesis to their applied management 
(National Research Council 1997). For example, predator pit 
dynamics predict that if a prey population is managed to be 
released from predation (e.g. via predator control) and let to 
grow to high densities out of the ‘pit’, then later relaxation of 
predator management will let predator populations regrow to 
achieve both predator and prey populations at high densities 
(Boertje  et  al. 1996). We then explored a wider parameter 

space using bifurcation analyses to understand how applicable 
these models were to other predator–prey systems. Because 
of a potential interaction between the amount of stochastic 
predation (top–down) and the productivity of the environ-
ment (bottom–up), we explored the dynamics of these sys-
tems with varying amounts of stochasticity in predation and 
environments with low and high prey carrying capacities.

Models and analysis

Deterministic model of prey growth with predation

First, we explored the equilibria present in population growth 
with predation in a deterministic framework to understand 
dynamics in absence of stochasticity. We chose a discrete-
time modelling framework because many species have dis-
crete reproductive seasons (Eberhardt 1998). We modeled 
prey population growth in the absence of predation by a 
particular predator using the generalized theta-logistic model 
(Gilpin and Ayala 1973):
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where Nt is prey population size at time t and μt is the popula-
tion growth rate:
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In Eq. 2 rmax is the maximum growth rate when N equals 0, K 
is the carrying capacity and θ is the nonlinear shape param-
eter governing the nonlinear effect of density on the growth 
rate. We then included the effect of predation:
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where Pt is the predation rate (total response; proportion of 
prey killed by predators), and A is the proportion of predation 
that is additive, i.e. that is expected to cause a decline in prey 
survival. This is to account for the fact that not all predation 
is additive; predation can be compensatory (e.g. predators 
kill the ‘doomed surplus’; Errington 1956). To better connect 
the predation rate to ecological processes, we decomposed 
the predation rate Pt into the functional response (Ψt; no. 
prey killed/predator as a function of no. prey) and numerical 
response (Wt; no. predators as a function of no. prey), which 
were modeled using hyperbolic Michaelis–Menten functions 
(i.e. a variant of Holling’s disc equation; Real 1977):
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where α0 is the maximum kill rate, α1 is the half saturation 
constant of kill rate, α2 is the shape parameter (where 0 = type 
II; 1 = type III functional response), δ0 is the minimum pred-
ator density, δ1 is the maximum predator density and δ2 is 
the half saturation constant of predator density. We modeled 
the ‘isocline’ numerical response (Eq. 6; Wt) phenomenologi-
cally based off of previous theoretical and empirical research, 
assuming alternative prey were available to the predator at 
low prey densities, and assuming that predator numbers 
saturate at high prey densities due to nutritional factors or 
spacing behavior (Supporting information) (Holling 1959, 
Messier 1994, Bayliss and Choquenot 2002). The numerical 
response is important for model realism but does not affect 
the existence of predator pits (Table 2). In the numerical 
response we assumed a lag of one time-step for prey biomass 
(Nt−1) to be converted into predator biomass to allow time for 
the predator population to grow in response to predation on 
prey (Eberhardt 1998). Simulations without lags produced 
similar results.

Stochastic model of prey growth with predation

We added stochasticity to the deterministic model (Eq. 3) in 
two ways. We first added environmental stochasticity to prey 
population growth in the absence of predation:
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where Et ~ normal[0, σ2]. Second, we modeled stochasticity 
in the predation rate by adding a normally distributed error 
term Ft ~ normal[0, τ2] to the logit-transformed predation 
rate logit(PtA) + Ft and then back-transforming to get the sto-
chastic predation rate. These transformations were necessary 
so that stochasiticity could be added to the predation rate and 
still be bounded from 0 to 1, as it is the proportion of prey 
killed. Thus:
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Model parameterization

To explore how adding stochasticity changes the predictions 
of a deterministic predation model with realistic conditions, 
we first parameterized our model using a well-studied system 
of wolf predation on elk and then explored a wider range of 
parameter space using sensitivity analyses. Parameterization 
for the wolf–elk system are as follows (Table 1). The param-
eter rmax for elk was obtained from Eberhardt (1996), who 
observed that the maximum intrinsic growth rate could be as 
high as 0.28. We used elk abundance data which were gath-
ered from the northern Yellowstone elk herd, WY-MT, USA, 
from 1968 to 1980, where elk were naturally regulated with-
out predation by wolves (Coughenour and Singer 1996), to 
estimate θ. We estimated θ to be 4.0 by holding rmax = 0.28 
and K = 13 000 (assumed to be the apex of elk population 
size based on data) constant in fitting the theta-logistic model 
to these Yellowstone data using a nonlinear least-squares pro-
cedure (Supporting information). This θ = 4.0 is consistent 
with biological evidence that elk have slow life histories rep-
resentative of convex nonlinear density-dependent growth 
(Bonenfant et al. 2009). For Eq. 5 and 6, we assumed α0, α1 
and δ1 were 20, 1 and 35, respectively, by averaging across 

Table 1. Parameter values for deterministic and stochastic models (Eq. 3 and 8, respectively) for the wolf–elk system.

Parameter Meaning Value(s) Source(s)

rmax Intrinsic growth rate of prey 0.28 Eberhardt 1996
K Carrying capacity of prey 5; 20 NA
θ Nonlinear shape parameter of density-dependence of prey 4 Coughenour and Singer 1996
A Proportion of prey mortality which is additive 0.7 Ballard et al. 2001
α0 Maximum of kill rate for functional response, Ψt 20 Hayes and Harestad 2000, Smith et al. 2004, 

White and Garrott 2005, Vucetich et al. 2011
α1 Half-saturation constant of kill rate for functional response, Ψt 1 Hayes and Harestad 2000, Smith et al. 2004, 

White and Garrott 2005, Vucetich et al. 2011
α2 Shape parameter of kill rate for functional response, Ψt 0 Vucetich et al. 2002, Hebblewhite 2013, 

Zimmermann et al. 2015
δ0 Minimum predator density of numerical response, Wt 5 Vucetich et al. 2002, Hebblewhite 2013, 

Zimmermann et al. 2015
δ1 Maximum predator density of numerical response, Wt 35 Hayes and Harestad 2000, Smith et al. 2004, 

White and Garrott 2005, Vucetich et al. 2011
δ2 Half-saturation constant of predator density for numerical 

response, Wt

1 Vucetich et al. 2002, Hebblewhite 2013, 
Zimmermann et al. 2015

σ2 Environmental stochasticity 0.1 NA
τ2 Predation stochasticity 0–2 Vucetich et al. 2011
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prior estimates of kill rates and maximum wolf densities 
(Smith et al. 2004, White and Garrott 2005, Vucetich et al. 
2011). The parameters α2, δ0 and δ2 were set to 0, 5 and 
1, respectively, allowing for type II functional and numeri-
cal responses, which have been found to characterize wolf 
predation on elk (Vucetich et al. 2002, Hebblewhite 2013, 
Zimmermann et al. 2015). Elk and wolf abundance were on 
different spatial scales (elk/1 km2 and wolves/1000 km2), so 
elk abundance (Nt) was multiplied by 1000 within the pre-
dation rate equation (Eq. 4). Predation rate (total response; 
Pt) was density-dependent, then became inversely density 
dependent at a density of 0.75 elk km−2 (Supporting infor-
mation), consistent with simulations from type II functional 
and numerical responses (Holling 1959, Messier 1995). The 
parameter A was suggested to be 0.7 from the proportion of 
predation that is expected to contribute to additive mortality 
(Ballard et al. 2001). We modeled the relationship between 
prey density and prey growth rate using Eq. 3 in simulations 
with and without predation and with high and low carrying 
capacity (K = 20 or 5 elk km−2, respectively) in relation to 
the initial condition of population density, N1 = 3. Varying 
initial conditions did not change the dynamical results found 
in Eq. 3 or 8.

To examine the interaction among stochasticity and the 
effects of top–down (predation) versus bottom–up (resource 
limitation; proxied by K) regulation, we ran simulations of 
population growth (Eq. 8) where both carrying capacity 
(K = 5 or 20) and predation stochasticity (τ2 = 0–2) were 
varied. We set environmental stochasticity on prey to a rela-
tively low level (σ2 to 0.1), as we were primarily interested 
in the effects of predation stochasticity on prey dynamics. 
Other values did not change our primary findings (Table 2). 
Predation stochasticity (τ2) was varied between 0 and 2 due 
to high variability observed in predation rates of wolves on 
elk (Vucetich  et  al. 2011). Simulations showed that under 
the maximum predation stochasticity (τ2 = 2), predation 
rate (Pt) had a mean standard deviation of 0.207, which is 
within the standard deviation found for wolf–elk preda-
tion rates, 0.277, in Banff National Park, Alberta, Canada 
(Vucetich et al. 2011). Here, we hypothesized that predation 
stochasticity was driven by stochastic weather events, which 
have been shown to mediate predator–prey interactions (Post 
and Stenseth 1998, Hebblewhite 2005, Wilmers et al. 2020), 

and suggests that Et and Ft are correlated. Therefore, we drew 
Et and Ft from a bivariate normal distribution with means of 
0, variances of σ2 and τ2, respectively, and correlation of 0.7. 
Alternative correlation values produced qualitatively similar 
results (Supporting information). Initial conditions for den-
sity (N1) were set to 3, and 1000 replications were run per sim-
ulation. Simulations were run for 500 years until N reached 
a stationary distribution, where local modes/antimodes are 
fixed and equivalent to the stable/unstable equilibria of deter-
ministic population models (Dennis and Costantino 1988, 
Dennis et al. 2016). We recorded qualitative changes in sta-
tionary distributions (known as P-bifurcations (Arnold 1998, 
Bashkirtseva and Ryashko 2018)) as a function of both τ2 
and K.

Bifurcation and sensitivity analyses

As has been the case for many systems, the deterministic 
model (Eq. 3) using our particular parameterization of the 
wolf–elk system did not predict a predator pit. To evaluate if 
alternative parameterizations would have resulted in a deter-
ministic predator pit across a wider range of parameter space, 
we conducted bifurcation analyses. We simultaneously varied 
all parameter values by taking 10 000 random draws from 
uniform distributions from −30 to +30% of each original 
parameter value. We then recorded the proportion of draws 
in which predator pits occurred. To evaluate how uncertainty 
in parameter values affected the predicted equilibrium (there 
was only one for our deterministic model), we varied all 
parameters by ± 5%, ± 15% and ± 30% and measured the 
population size at t = 500.

We conducted a similar numerical bifurcation analysis to 
explore a wider range of parameter space in the stochastic 
model (Eq. 8). However, due to the intractability of simul-
taneously varying and exploring the 12-dimensional param-
eter space of our stochastic model, we performed a restricted 
bifurcation analysis for all parameters in the stochastic model 
and more thorough bifurcation analyses with the most sensi-
tive and relevant life-history parameters (K, τ2, rmax) to extend 
our results to other predator–prey relationships. In our 
restricted bifurcation analysis, we varied each parameter value 
by ± 5%, ± 15% and ± 30% while holding K = 20 and other 
parameters constant. We then recorded dynamical changes 

Table 2. Bifurcation analysis for Eq. 8 at t = 500 over 1000 simulations. Parameter values were varied from −30% to +30% and changes in 
dynamical predictions were recorded. ‘High Eq.’ shows that one stable equilibrium near K is found; ‘Low Eq.’ shows that one stable equi-
librium near or at 0 is found; and ‘Predator Pit’ shows two stable equilibria separated by one unstable equilibrium are found in the corre-
sponding parameter space.

Change in 
parameter rmax K θ σ2 α0 A τ2 δ1–δ0

−30% Low Eq. Pred-Pit Pred-Pit Pred-Pit High Eq. High Eq. High Eq. Pred-Pit
−15% Pred-Pit Pred-Pit Pred-Pit Pred-Pit Pred-Pit Pred-Pit Pred-Pit Pred-Pit
−5% Pred-Pit Pred-Pit Pred-Pit Pred-Pit Pred-Pit Pred-Pit Pred-Pit Pred-Pit
0% Pred-Pit Pred-Pit Pred-Pit Pred-Pit Pred-Pit Pred-Pit Pred-Pit Pred-Pit
5% Pred-Pit Pred-Pit Pred-Pit Pred-Pit Pred-Pit Pred-Pit Pred-Pit Pred-Pit
15% Pred-Pit Pred-Pit Pred-Pit Pred-Pit Pred-Pit Pred-Pit Low Eq. Pred-Pit
30% Pred-Pit Pred-Pit Pred-Pit Pred-Pit Low Eq. Pred-Pit Low Eq. Pred-Pit
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in stationary distributions (P-bifurcations) as a function of 
these varied parameters (Bashkirtseva and Ryashko 2018). To 
explore the influence of top–down versus bottom–up effects 
on predator pit dynamics, we conducted a more thorough 
bifurcation analysis by simultaneously varying K from 0 to 
20, and τ2 from 0 to 2. Lastly, to explore how slow–fast life 
history traits affect the emergence of predator pits, we per-
formed a more thorough bifurcation analysis by simultane-
ously varying rmax from 0.1 to 0.6, and τ2 from 0 to 2, thereby 
encompassing a relatively wider range of animal prey species.

Results

Deterministic model predicts no predator pit

Using realistic parameters for elk in the northern Rocky 
Mountains, USA, we found that without predation, prey 
population growth followed a convex nonlinear density-
dependent path with one equilibrium at carrying capacity 
(Fig. 2). Importantly, although there was a basin of prey 
population growth, the predation rate was not high enough 
to predict a predator pit in this system (two stable equilibria 
separated by one unstable equilibrium, Fig. 1b), and only one 
stable equilibrium near K in these deterministic models was 
observed. For more results on the sensitivity of this single 
equilibria to changes in parameters (Supporting informa-
tion). Only 1.04% of simulations in the bifurcation analysis 
of the deterministic predator–prey model (Eq. 3), across a 
wide range of parameter combinations, indicated predator 
pit dynamics (Fig. 2c).

Stochastic model predicts a predator pit

In contrast to straightforward predictions from the deter-
ministic model, we found that prey population dynamics, 

including the presence of predator pits and the location of 
equilibria, depended on the level of predation stochasticity 
and the prey carrying capacity. Similar to deterministic mod-
els, we found a low likelihood for predator pits for simula-
tions with low predation stochasticity, as shown by unimodal 
stationary distributions with one stable equilibrium near the 
carrying capacity (modes: low K = 4.53; high K = 18.98) and 
0% likelihood of low densities and extinction (Fig. 3e–f, 4a). 
As predation stochasticity increased, predator pits were found 
in both carrying capacity scenarios (Fig. 3e–f ). Under the high 
carrying capacity scenario, there was a higher likelihood for 
predator pits (local modes = 0.293 and 18.57 elk km−2) that 
were separated by an unstable equilibrium (critical threshold; 
antimode = 6.68 elk km−2) and a low likelihood (0.045) of 
extinction (defined as N500 < 0.1; Fig. 3a, c, e, 4a). However 
under the low carrying capacity scenario and high levels of 
predation stochasticity, predator pits became less likely, with 
one stable equilibrium at low densities (mode = 0.047) more 
prevalent far away from K and a higher likelihood of extinc-
tion (0.325; Fig. 3b, d, f, 4a).

When stochasticity in predation was included, we found 
predator-pits across a wider range of realistic parameter val-
ues using numerical bifurcation analyses (Table 2). We found 
predator pits across realistic ranges of rmax for many animal 
prey, with higher rates of growth allowing for higher likeli-
hoods of high density equilibria and lower rates of growth 
allowing for higher likelihoods of low density equilibria and 
extinction (Fig. 4b).

Discussion

With the inclusion of stochasticity, we found emergent 
dynamic properties (e.g. predator pits) that were not pre-
dicted in deterministic models. Although the importance 
of stochasticity in ecological systems with alternative stable 

Figure 2. Growth rate, μt, per density for (a), high carrying capacity (K = 20) (b), low carrying capacity (K = 5) deterministic models of wolf 
Canis lupus predation on elk Cervus canadensis and (c), bifurcation analysis in deterministic predator–prey models. Parameter values in (c) 
were obtained from 10 000 random draws of uniform distributions from −30 to +30% of each original parameter value (Table 1). Black 
and red solid lines represent Eq. 3 without and with predation (PtA), respectively. All wolf–elk predator–prey scenarios (a–b) resulted in one 
equilibrium near K where the growth rate curves cross the dashed black line (growth rate of zero), and thus no predator pit occurs. 1.04% 
of simulations in the bifurcation analysis (c) resulted in two equilibria, and thus a predator pit.
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states has been studied extensively (e.g. stochasticity per-
turbs dynamics into a different stable state) (Ives et al. 2008, 
Scheffer  et  al. 2009, Hastings  et  al. 2018), the effects of 
stochasticity have been poorly investigated within higher-
trophic levels, especially with data-driven systems. Moreover, 
these noise-induced transitions to new dynamical behaviors 
are seldom investigated in predator–prey theory and the 
larger ecological literature but are quite common in physics 
(Ridolfi et al. 2011). We suggest that the pedagogy of eco-
logical theory rooted in deterministic basins of attraction has 
led to some phenomenon, such as alternative stable states and 
predator pits, to be thought unlikely to occur in systems or 

only by complex mechanisms. In fact an evaluation of deter-
ministic models led Messier (1994) to conclude that the 
parameter space necessary for predator pits is so small that 
they should be rare in nature. In light of our results, we echo 
Dennis et al. (2016) statement that: ‘the deterministic mod-
eling tradition obscures emergent dynamic behavior caused 
by stochasticity’. As such, we suggest that the consideration 
of stochasticity is necessary to understand animal population 
dynamics and alternative stable states in ecological systems.

Our study suggests that predator pits might be more 
common than deterministic models suggest, therefore, we 
hope this spurs future research to conduct rigorous tests of 

Figure 3. Population growth under predation stochasticity with high (K = 20) and low carrying capacity (K = 5). (a and b) Represent 1000 
simulations of population growth (Eq. 8) with high predation stochasticity (τ2 = 1.75) under high (a) and low (b) carrying capacity. (c and 
d) Show frequency plots of the stationary distribution of densities (a) and (b) at t = 500. Dashed lines represent carrying capacity. (e and f ) 
Show a heatmap of the change in the distribution of prey densities at t = 500 across varying levels of predation stochasticity (τ2). Red num-
bers in the ‘prey density’ axis indicate carrying capacity.
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their prevalence in natural systems. However, to do so, one 
must conduct an experiment called a ‘test for non-recovery’ 
(Schröder et al. 2005), where a perturbation (predator con-
trol) is used to prompt a discontinuous transition between 
stable states (May 1977, Scheffer et al. 2001), thereby test-
ing the existence of alternative stable states (predator pit). Yet 
most cases of alternative stable states in predator–prey sys-
tems using predator control are equivocal (however, Schmitz 
2004) because of three rigorous, necessary evidentiary criteria. 
First, a perturbation experiment (complete predator control/
removal) must disrupt the ecosystem structure long enough 
to cause a dramatic change (‘catastrophic shift’; Scheffer et al. 
2001) to another stable state (low to high prey density) (May 
1977, Connell and Sousa 1983). Second, the control must 
be reversed (predator reintroduction, immigration, etc.) and 
demonstrate that the original stable state (low prey density) 
cannot be recovered, which is known as hysteresis (Connell 
and Sousa 1983, Scheffer et al. 2001, Schröder et al. 2005). 
Lastly, both alternative stable states (low and high prey densi-
ties) must be shown to persist under identical abiotic condi-
tions for at least one turnover of all individuals in the system 
(e.g. ungulates ≈ 10–20 years) (Connell and Sousa 1983).

It is clear from these rigid qualifications why few robust 
experimental tests of predator pits have been carried out in 
far-ranging, large mammal predator–prey systems due to the 
inherent complexity, spatial and temporal scale, experimen-
tal difficulty and cost of these experiments (Schröder  et  al. 
2005). However, statistical detection criteria developed to 
detect transitions between alternative stable states may help 
to detect predator pits. For example, statistical properties 
of time-series such as increasing autocorrelation, variance 
and nonlinearity are known to be early warning signs for 
abrupt transitions between stable states (Scheffer et al. 2009, 
Dakos et al. 2017). Moreover, approaches using quasi-poten-
tials to analyze stable states in stochastic differential equa-
tions (Nolting and Abbott 2016, Abbott and Nolting 2017), 

extended to discrete systems, could help reveal predator pit 
dynamics. Future research could investigate time-series from 
large carnivore control experiments in the 1970–1990s in 
Alaska, USA, which demonstrated that predator pits could 
occur in wolf–moose systems (Boertje et al. 1996). Another 
pertinent example to be investigated are predator exclu-
sion studies in the National Bison Range, Montana, USA, 
which have revealed the existence of multiple stable equilib-
ria in rangeland grasshopper populations that vary seemingly 
because of stochasticity between replicates (Belovsky and 
Joern 1995, G. Belovsky pers. comm.).

Our intention was to investigate if predator pit dynam-
ics were possible under realistic parameter values for preda-
tor–prey systems. We chose to parameterize our models with 
wolves and elk because previous studies of this system pro-
vided us with estimates of many of the parameters needed in 
our model. Our bifurcation analyses indicate that these pred-
ator pit dynamics could extend to other predator–prey sys-
tems, which we found in systems where parameters are even 
far from the bifurcation point (Table 2, Fig. 4). Predator pits 
may even occur in prey with relatively high intrinsic rates of 
growth (Fig. 4b). However, alternative model structures (e.g. 
space, stage-structure) may lead to different, or even more 
complex dynamics. In some cases, we did not have informa-
tion on particular processes (i.e. statistical distribution of pre-
dation stochasticity; proportion of predation additivity), so 
we used values that we deemed realistic for this system and 
sensitivity analyses to show how much expected outcomes 
depend on our assumptions. However, there may be some 
caveats to these results given the current lack of knowledge 
of these parameters. For example, the shape of predation 
stochasticity could change the emergent dynamics and likeli-
hood of predator pits. For convenience, we chose stochastic 
predation to be a Gaussian process through a logit scale, how-
ever predation rate could manifest through other stochastic 
distributions like the beta distribution. Further research into 

Figure 4. Equilibria of population growth in stochastic predator–prey models. P-bifurcation plots show the qualitative changes in the sta-
tionary distributions of 1000 simulations of prey population growth with stochastic predation (Eq. 8) as a function of predation stochastic-
ity (τ2) and (a) K (carrying capacity) or (b) rmax (intrinsic growth rate of prey). ‘High’ shows that one stable equilibrium near K is found; 
‘Low’ shows that one stable equilibrium near or at 0 is found; and ‘Pred-Pit’ shows two stable equilibria separated by one unstable equilib-
rium are found in the corresponding parameter space. Stationary distributions were recorded at at t = 500.
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the shape and role of predation stochasticity in nature is there-
fore necessary. Uncertainty in some parameter values coupled 
with relatively moderate sensitivity (Supporting informa-
tion) also indicates that future work is necessary to deter-
mine and constrain parameter values. For example, A, the 
proportion of additive mortality on the prey population, was 
inferred using past empirical evidence. However our sensitiv-
ity analysis indicated that A was moderately sensitive, there-
fore uncertainty in A could possibly influence our ability to 
detect dynamical behavior in these systems. Nonetheless, our 
simple models with feasible values for predator–prey systems 
coupled with our sensitivity analyses suggest that predator 
pits can occur under the influence of predation stochasticity.

Management and conservation of threatened, endangered 
or harvested prey populations necessitates consideration of 
the interaction between top–down (predation) and bottom–
up (habitat) effects on prey population growth. This leads to 
two potential management scenarios of prey under stochas-
tic predation, if predator pits are found. If habitat is poor 
(i.e. low carrying capacity), then low density stable states are 
more likely than predator pits (Fig. 3f, 4a). Therefore in this 
scenario, one cannot use predator control to raise prey popu-
lations to high densities, then let the predator populations 
regrow and expect prey to stay at high densities, as a preda-
tor pit is less likely to occur and there may be no alternative 
stable states. To have both high densities of predators and 
prey, improving the habitat is essential to move the popu-
lation to a predator pit scenario. If habitat is productive or 
is improved from the previous scenario (i.e. high carrying 
capacity), then a predator pit could occur and prey popula-
tions might be held at a low density equilibrium (Fig. 1b, 
3e, 4a). In this scenario, predator control may allow prey to 
grow to a high density equilibrium. Subsequent relaxation of 
predator control will then let predator populations regrow to 
achieve both predator and prey populations at high densities. 
In sum, our results illustrate a simple mechanism for predator 
pits, and indicate the need for robust theoretical, statistical 
and experimental studies in the future to elucidate the exis-
tence of predator pits.
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