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Class I MHC molecules bind intracellular peptides for
presentation to cytotoxic T lymphocytes. Identification of
peptides presented by class I molecules during infection is
therefore a priority for detecting and targeting intracellu-
lar pathogens. To understand which host-encoded pep-
tides distinguish HIV-infected cells, we have developed a
mass spectrometric approach to characterize HLA-
B*0702 peptides unique to or up-regulated on infected T
cells. In this study, we identify 15 host proteins that are
differentially presented on infected human T cells. Pep-
tides with increased expression on HIV-infected cells were
derived from multiple categories of cellular proteins includ-
ing RNA binding proteins and cell cycle regulatory proteins.
Therefore, comprehensive analysis of the B*0702 peptide
repertoire demonstrates that marked differences in host pro-
tein presentation occur after HIV infection. The Journal of

Immunology, 2003, 171: 22-26.

ajor histocompatibility complex class I molecules

exist as heterotrimers composed of a H chain, L

chain, and peptide ligand (1). Class I molecules

sample peptides from the proteome of the cell, transport the
peptides to the surface, and interface with immune effectors
where they communicate cellular fitness (2). This ability to
sample and report on vast numbers of intracellular proteins has
earned class I molecules the nickname “nature’s gene chips” (3).
Although it has been demonstrated that MHC molecules
sample a vast array of endogenous proteins during the normal
cellular lifecycle, characterization of host-protein-derived pep-
tides after HIV infection has not been performed. Therefore, a
fundamental question arises: what host-encoded peptides are
uniquely presented on the surface of infected cells? Based upon
the observation that HIV produces and interacts with multiple
host-encoded proteins inside the cell (including Tsg101 (4) and
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RNA polymerase IT (5)), we hypothesized that host-protein-de-
rived peptides are uniquely presented during infection.

We previously described a bioreactor-HLA-protein produc-
tion method and a mass-spectrometric-ion-mapping system for
comparatively screening class I-eluted peptide ligands (6, 7). In
this study, we extend this approach to test the hypothesis that
HIV infection alters the presentation of host-encoded peptides.
Peptides eluted from HLA-B*0702 molecules produced in
HIV-infected or uninfected cells were directly compared using
mass spectrometry. Comparative mapping of HIV-infected and
uninfected peptides results in the identification of 15 host-de-
rived peptides uniquely presented on HIV-infected cells.

Materials and Methods
Soluble HLA production

Soluble HLA-B*0702 transfectants were produced as described (6) using
Sup-TT1 cells (7). Transfectants were cultured in a Unisyn CP2500 bioreactor
unit (Biovest International, Minneapolis, MN) for 2 mo with continuous pep-
tide collection. Approximately 30 mg of soluble HLA (sHLA)* were collected
from either uninfected or infected cells, supplemented with 1% Triton X-100,
and stored at 4°C.

HIV infection

HIV-1 strain MN was propagated in Sup-T1 transfectants and monitored by
p24 ELISA (Zeptometrix, Buffalo, NY). For cell pharm infection, 3 X 10” cells
were infected at a multiplicity of infection (MOI) of 0.5. For time course pro-
tein analysis, 1 X 10 cells were infected at an MOI of 4.5 for 2 h, washed once,
and replaced in RPMI 1640 + 20% FBS.

Peptide purification

B*0702 molecules were affinity purified over a W6/32 affinity column. Pep-
tides were eluted with 0.2 N acetic acid, brought to 10% acetic acid concen-
tration, and heated to 78°C for 10 min. Fractions were purified in a stirred cell
with a 3-kDa molecular mass cutoff cellulose membrane (Millipore, Bedford,
MA). Peptides were reversed-phase-HPLC fractionated using a standard gradi-
ent of acetonitrile. Separate but identical peptide purifications were done from
uninfected and infected cells.
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FIGURE 1. Mass spectrometric analysis of HLA-B*0702-bound peptides in HIV-infected cells. Peptides eluted from affinity purified sHLA were mapped on an

ESI-QTOF mass spectrometer. Spectra were scanned for ion differences unique to infected cells. A, Initial scans were performed with windows of 200 atomic mass
units and (B) subsequently zoomed to identify ion differences. C, Identified differences were subjected to MS/MS. Top panel, Peptide from uninfected cells; botzom
panel, fragmentation of identical ion with identical atomic mass units in the uninfected fraction. Different fragmentation patterns indicated the absence of the peptide
in the uninfected fraction. D, MS/MS sequence assignment from differentially expressed peptide. £, Synthetic peptides corresponding to putative sequence were

subjected to MS/MS to verify sequence integrity.

Mass spectrometric analysis

Fractionated peptides were mapped by mass spectrometry as described (7). Pep-
tides were nanoelectrosprayed (Protana, Odense, Denmark) into a Q-Star
QTOF mass spectrometer (PerSeptive Sciex, Foster City, CA). Spectra from
the same fraction in uninfected/infected cells were aligned to the same mass
range and visually assessed for the presence of differences that were selected for
manual and automated sequence assignment using the programs BioMultiview
(PerSeptive Sciex) and MASCOT (Matrix Science, London, U.K.) (8). Syn-
thetic peptides corresponding to each putative sequence were produced and
subjected to mass spectroscopy MS/MS under identical collision conditions as
the naturally occurring peptide and overlaid to confirm sequence identity.

Peptide binding assay

ICs, values were determined using the HLA-B*0702 PolyScreen kit (Pure Pro-
tein, Oklahoma City, OK) according to the manufacturer’s instructions. Fluo-
rescently labeled control peptide and sHLA were incubated with each test pep-
tide until equilibration of peptide replacement was reached as read on an
Analyst AD plate reader (Molecular Devices, Sunnyvale, CA). ICs, values were
calculated using a dose-response curve.

Real-time PCR and Western blots

For Western blots, cells were lysed in electrophoresis buffer and total protein
was quantified using the BCA Protein Analysis kit (Pierce, Rockford, IL). Pro-
teins were transferred onto nitrocellulose membranes (Osmonics, Westbor-
ough, MA) before probing and detecting with commercially available Abs. For
real-time PCR, total RNA was isolated using the Total RNA Isolation kit (Am-
bion, Austin, TX) and cDNA synthesized using the Retroscript kit. PCR was
performed on a PE-7700 Light Cycler (Applied Biosystems, Foster City, CA)
using primer pairs designed using Primer Express software. B-Actin was used as
an internal standard. Relative transcript levels were calculated using the 8-8
cycle threshold method and normalized to zero in the uninfected cells.

Apoptosis analysis

Infected cells were treated with the Apo-Direct kit (BD Biosciences, Mountain
View, CA) according to manufacturer’s instructions and followed by analysis
on a FACSCalibur. Poly(ADP-ribose) polymerase (PARP) cleavage was de-
tected from the same Western blot lysates as above with an anti-PARP Ab (BD
Biosciences).

Results and Discussion
Mass spectrometric mapping of peptides from infected and uninfected
cells identifies 15 unique host-derived peptides

Following the harvest of B*0702/peptide complexes from both
infected and uninfected cells, peptide ligands were eluted, frac-
tionated, and each fraction was comparatively mapped using
MS. Multiple peptides unique to HIV-infected cells were iden-
tified in these MS spectra (Fig. 14). For example, comparison of
spectra produced with peptides eluted from infected and unin-
fected cells identified a peak unique to the infected cells at 484.7
atomic mass units of fraction 16 (Fig. 1B). Peptide peaks
unique to or up-regulated on HIV-infected cells were analyzed

Table 1. ICs, values for peptide binding to sHLA-B*0702
Peptide Sequence 1Cs, (nM)
TPQDLNTM.# 3047
SPRTLNAW/A 254.8
AASKERSGVSL" 317.3
AARPATSTL 209.8
APAYSRAL 214.7
APKRPPSAF 176.1
GPRTAALGLL 257.9
| ATVDSYVI 218,900
| PCLLI SFL 5,980
LPQANRDTL 598.7
LPTSHPKI V 3,563
NPNQNKNVAL 1,581
QPRYPVNSV 945.5
RPYSNVSNL 227.5
SPNQARAQAAL 926.3
STTAI CATGL 248,100
TPQSNRPVmM 466

“ Control peptide, HIV-derived.
¢ Control peptide, self-derived.
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Table 1. HLA-B*0702 peptides differentially presented on infected cells
Peptide Sequence Source Protein Abbreviation Main Cellular Function
APKRPPSAF High mobility group protein 1/2 HMG 1/2 DNA binding
TPQSNRPVNT RNA polymerase 11, polypeptide A RNA pol Transcription
SPNQARAQAAL Polypyrimidine tract-binding protein PTB mRNA processing and stability
NPNQNKNVAL Hu Ag R (ELAV-like 1)* HuR mRNA processing and stability
AARPATSTL Eukaryotic translation initiation factor 4GI elF4G Translation
QPRYPVNSV Tailless complex protein 1, e polypeptide TCP-1 Cytoplasmic protein chaperone
APAYSRAL Heat shock protein 27 HSP27 Cytoplasmic protein chaperone
STTAI CATGL Ubiquitin-specific protease 3 USP3 Ubiquitin pathway
GPRTAALGLL EG binding protein (reticulocalbin 2)* E6BP Unknown; ubiquitin pathway?
I PCLLI SFL Cholinergic receptor, a 3 polypeptide CholR Signal transduction
RPYSNVSNL Set-binding factor 1 SBEF-1 Cell growth and differentiation
LPQANRDTL MgcRacGap MRG Cell growth and differentiation
LPTSHPKI V Suppressin Sup Cell cycle regulator
VAMVAAL VA Spark-like protein 1 (hevin)® Spark-like Antiadhesive extracellular matrix protein
| ATVDSYVI Tenascin C (hexabrachion)” TenC Similar to antiadhesive extracellular matrix protein

“ Oxidized methionine.
Protein possessing more than one common name.

with tandem MS (Fig. 1, Cand E). De novo sequence identi-
fication from MS/MS fragmentation patterns was performed
on each peak unique to or up-regulated on infected cells (Fig. 1,
D and E). Putatively identified ligands were analyzed for their
predicted tandem MS fragmentation pattern (Fig. 1D) and
compared with the spectra produced from uninfected cells (Fig.
1C). As a final confirmation of sequence integrity, peptides cor-
responding to the putative ligand sequences were synthesized
and fragmented (Fig. 1£). Only peptides with identical exper-
imental and control MS/MS fragmentation patterns were se-
lected for further analyses.

As an independent verification of correct sequence assign-
ment, we performed peptide-binding assays on each of the pep-
tides identified through mass spectrometry. Synthetic peptides
representing the peptide sequence were used in competition
against a fluorescently labeled control peptide for binding to
sHLA B*0702 molecules; IC, values were established for each
peptide (Table I). All synthetic peptides bound to HLA-
B*0702, most as strongly as the B*0702 control peptides. These
data, combined with MS/MS fragmentation pattern analysis,
confirmed that MS sequence analysis had yielded the correct
ligand sequences.

Peptides presented at altered levels during HIV infection were derived
Jfrom host proteins involved in multiple cellular pathways

Comparison of mass spectra from peptides eluted from infected
and uninfected cells yielded 15 self protein-derived peptides
showing altered expression on HIV-infected cells. These host-
encoded peptides could be categorized by primary cellular func-
tion (Table II). Several of the peptides derived from proteins
involved in RNA transcription or translation; peptides NPN-
QNKNVAL and SPNQARAQAAL are both fragments of
mRNA binding proteins, while the source protein for AP-
KRPPSAF, high-mobility group protein (HMG) 1, facilitates
the binding of transcription factors to DNA sequences (9). An-
other ligand in this category (AARPATSTL) derived from eukary-
otic translation initiation factor (eIF) 4GI, a protein that plays a key
role in cap-dependent mRNA translation initiation (10).

A second category of peptides unique to HIV-infected cells
derived from cellular proteins involved in protein regulation.

Peptides STTAICATGL and GPRTAALGLL derived from

ubiquitin-specific protease 3 (USP3) and E6-binding protein
(E6BP), respectively. Protein USP3 hydrolyzes ubiquitin-pro-
tein bonds while E6BP can bind and alter the activity of a
known ubiquitin ligase (11). Peptides APAYSRAL and QPRY-
PVNSV derived from source proteins heat shock protein 27
(HSP27) and tailless-complex protein (T'CP)-1 (Table II) and par-
ticipate in protein folding as cytoplasmic chaperones (12, 13).
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FIGURE 2. Transcriptional and protein levels of peptide-source proteins
during a mixed-HIV infection of sHLA-B*0702 transfectants. 4, Relative tran-
script levels of peptide source proteins as determined by real-time PCR. B,
Western blot analysis of peptide-source proteins before (—HIV) and after
(+HIV) infection.
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FIGURE 3. Kinetics of protein alterations during HIV infection of sHLA-B*0702 transfectants. Transfectants were infected with HIV MN and analyzed at 24-h
intervals postinfection. A, Percentage of cells undergoing apoptosis and CD4 down-regulation during infection as determined by flow cytometry. Percent viability
was determined by forward and side scatter. B, sHLA secretion and p24 secretion as measured by ELISA. C, Apoptosis analysis by Western blotting for PARP
cleavage. D, Western blots of proteins representing unique peptides. £, Kinetics of protein changes during infection.

Unique peptides were derived from host proteins with altered protein
levels during infection

Unique presentation of peptides during infection could be the
result of multiple alterations inside the infected cell. Because
HIV has been shown to transcriptionally up-regulate cellular
genes (14) and gene overexpression can result in presentation by
class I molecules (15), transcriptional up-regulation of genes
representing unique peptides could be occurring before peptide
presentation. To test this interpretation, real-time PCR was
performed on mRNA transcripts from infected cells (Fig. 24).
Because the bioreactor system used for the harvest of sHLA pro-
teins from infected cells represented a mixture of cells at different
points in infection, T cells were infected with HIV and fed bi-
weekly with uninfected cells. Once syncitia were evident visually,
cells were pelleted, lysed, and real-time PCR was performed on ex-

tracted mRNA. Little change in the transcriptional level of the pro-
teins examined was found. Thus, there was no pattern of transcrip-
tional activation that would account for an overabundance of
particular MHC-bound peptides on the infected cells.

A second possible mechanism for the presentation of unique
peptides during infection was fluctuation in the levels of cellular
proteins from which the peptides were derived. To examine this
possibility, we performed Western blotting on total protein ly-
sates from the same infected cells examined by real-time PCR.
All of the proteins examined—elF4GI, polypyrimidine tract-
binding protein (PTB), HuAg R (Hu R), TCP-1, and HSP27-
decreased in protein level in infected cells, indicating that deg-
radation or turnover of the proteins was occurring (Fig. 2B).
Thus, protein degradation during infection was the general
mechanism for unique peptide presentation during infection.
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Peptide changes occur early in infection

To determine the timing of protein changes, we performed a
time course infection with HIV. Sup-T1 T cells were infected
with HIV-1 MN at an MOI of 4.5 and cells and supernatants
were sampled at 24-h intervals postinfection. Primary indica-
tors of HIV infection were apparent early in the time course;
almost 100% of cells exhibited down-regulation of CD4 by day
2 (Fig. 34), while p24 release from infected cells began on day
4 (Fig. 3B). Flow cytometric measurement of cell viability and
apoptosis (Fig. 34) showed that a majority of the cells remained
viable throughout the infection while TUNEL staining indi-
cated that only one-fourth of the cells were undergoing apopto-
sis by day 8. As a secondary measurement of apoptosis, PARP
cleavage was detected on day 7 (Fig. 3C). Interestingly, secre-
tion of class I from infected cells precipitously dropped at day 5
(Fig. 3B), before the onset of apoptosis. These data indicate that
cell death and apoptosis occur at late time points during infec-
tion of Sup-T1 T cells with HIV strain MN and that class I
secretion predominates at early time points.

After establishing the kinetics of infection, Western blots
were performed on the host proteins represented by overabun-
dant peptides (Fig. 3D). Three of the proteins exhibited degra-
dation by day 3 postinfection, including eIF4G, TCP-1¢, and
PTB. Western blots further showed that HSP27, Hu R, and
HMG 1/2 were up-regulated 1-2 days postinfection before
dropping to lower levels later in the infection. The viral proteins
envelope (gp120) and p24 (by ELISA) became apparent at day
4 of infection. As demonstrated in the mixed bioreactor infec-
tion, decreased levels of source proteins e[F4G, TCP-1 «, and
PTB during HIV infection were not a result of decreased
mRNA production (measured by real-time PCR at days 1-4,
data not shown). Taken together, these data indicate that HLA-
B*0702 presentation of unique peptides occurs as a result of
protein changes occurring early in HIV infection (Fig. 3E).

In summary, the analysis of the HLA-B*0702 repertoire after
HIV infection reveals a series of host-protein-derived peptides
presented uniquely by infected cells. The host peptides most
likely are presented as the result of protein level fluctuations that
occur early during HIV infection. The consequence of these
overabundant self peptides during infection is currently un-
known but fits well into the paradigm of autoimmunity; auto-
immune reactions are often present in individuals suffering
from AIDS (16). Immune recognition of virus-induced host
epitopes such as those reported in this study could function in
the induction of autoimmune responses directly through in-
creasing the concentration of self peptides on the cell surface.

Indeed, this mechanism is supported by a recent study demon-
strating autoreactivity following measles virus-induced up-reg-
ulation of self peptides (17). Irrespective of possible function,
these host-derived peptide ligands provide an expanded view of
peptide presentation to the immune system following viral
infection.
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