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Abstract
Occupancy modelling is increasingly used to monitor changes in the spatial dis-
tribution of rare and threatened species. Occupancy methods have traditionally
relied upon temporally replicated surveys to estimate detection probability.
Recently, occupancy models with spatial replication have been used to estimate
detection probabilities over large geographical areas that are difficult to survey
repeatedly. We developed occupancy models that combine spatially and tempo-
rally replicated data and applied them to snow-tracking surveys of six species,
including wolverine Gulo gulo and Canadian lynx Lynx canadensis. We surveyed
thirty-nine 100-km2 cells and used 1-km trail segments within cells as spatial
replicates. We surveyed 56% of the cells once and 44% of the cells between 2 and
14 times, resulting in a total of 872 km surveyed. We compared four occupancy
models that incorporated spatial correlation in detection probability and hierar-
chically estimated occupancy at two spatial scales: cell occupancy and segment
presence. We detected strong serial correlation in probability of detection for all
species. Our models with serial correlation had higher occupancy estimates with
larger confidence intervals than models assuming segments were independent and
exchangeable. Spatial and temporal replicates have identical power to detect
decreases in occupancy when survey segments are independent, but spatial corre-
lation in detection probability can reduce the power of spatial replicates. The
effects of spatial correlation are more pronounced when detection probability is
low. Application of temporal replicates to spatial replicated surveys increases the
precision of occupancy estimates, but sampling design trade-offs between number
of sites and spatial versus temporal replicates need to balance levels of spatial
correlation in detection probability with costs to visit sites.

Introduction

Occupancy modelling has increasingly been used through-
out the world to monitor changes in species distribution
(MacKenzie et al., 2002, 2006). Occupancy modelling
methods can account for imperfect detection, whereby the
species was present but not detected. These methods pro-
vide both estimates of occupancy and probability of detec-
tion. Detection probabilities are traditionally estimated
from temporally replicated surveys or multiple observers
(MacKenzie et al., 2006). Temporal survey replicates can
be expensive and logistically difficult to implement in some
study areas. An alternative method for estimating detection
probabilities is to use randomly selected spatial replicates
with replacement (MacKenzie et al., 2006). However,
random sampling with replacement can be inefficient, and
Guillera-Arroita (2011) found that sampling without

replacement does not induce bias in the occupancy
estimator as long as the probability of species presence on
one replicate is not influenced by species presence on other
replicates within the same cell. Hines et al. (2010) addressed
spatial correlation among adjacent segments on linear
transects by modelling serial correlation in detection prob-
ability or probability of presence as Markovian processes.
Spatially replicated occupancy surveys have primarily been
applied to track surveys covering large geographical areas
for wide-ranging species such as tigers Panthera tigris on
trails in India (Hines et al., 2010), tigers on transects in
Sumatra (Wibisono et al., 2011) and brown hyenas Hyaena
brunnea on roads in Africa (Thorn et al., 2011). For both
temporally and spatially replicated study designs, increasing
the number of replicates increases the cumulative probabil-
ity of detecting the species as least once and improves pre-
cision for estimates of detection probability and occupancy.
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Thus, combining temporal and spatial replication could
improve occupancy estimates for rare species occurring in
expansive study areas that are difficult to survey. Hierarchi-
cal occupancy models combining spatial and temporal rep-
licates have received scant attention (Nichols et al., 2008;
Mordecai et al., 2011; Pavlacky et al., 2012; see review by
Bailey, MacKenzie & Nichols, 2013) and have not been
applied to long, linear track surveys.

Snow-tracking surveys have been used extensively to esti-
mate species distribution and relative abundance using both
ground (Thompson et al., 1989; Stanley & Bart, 1991;
Hayward et al., 2002; Stephens et al., 2006; Linnell et al.,
2007) and aerial-based surveys (Becker, Spindler &
Osborne, 1998; Golden et al., 2007; Magoun et al., 2007;
Gardner et al., 2010; Aing et al., 2011; Webb & Merrill,
2012). Aerial surveys usually focus upon single species
within open landscapes, whereas ground surveys detect mul-
tiple species within both open and forested landscapes.
Snow conditions and animal movement rates on these
surveys universally influence track detection. A variety of
approaches have been used to address the effects of move-
ment rates and snow conditions on survey results. These
approaches include simply selecting ideal survey conditions
to maximize detection probability (Thompson et al., 1989;
Becker et al., 1998), including sampling time and distance as
explanatory variables affecting track counts (Hayward
et al., 2002; Stephens et al., 2006), and estimating detection
rates through simulation of animal movements and survey
intensity (Stephens et al., 2006; Linnell et al., 2007; Webb
& Merrill, 2012). More recently, occupancy modelling
approaches have been used for aerial snow-tracking surveys
for wolverine (Magoun et al., 2007; Gardner et al., 2010)
and North American river otters Lontra canadensis (Aing
et al., 2011). These studies used temporal replication to
estimate detection probabilities and occupancy rates.

Wary and elusive carnivores such as wolverine and Cana-
dian lynx occur in rugged and remote landscapes and are
rarely observed and difficult to monitor. Little is known
about their population status and trends throughout much
of their range. Wolverine populations are thought to be
threatened by trapping (Krebs et al., 2004), declining snow
packs (Brodie & Post, 2010; Copeland et al., 2010;
McKelvey et al., 2011), back-country recreation (Krebs,
Lofroth & Parfitt, 2007), industrial development (Krebs
et al., 2007) and potentially competition with other large
carnivores (Inman et al., 2012). Consequently, they have
been designated as Warranted for Protection under the
US Endangered Species Act (Inman et al., 2012) and
Special Concern (Committee on the Status of Endangered
Wildlife in Canada (COSEWIC), 2003) in Canada. Cana-
dian lynx populations are strongly dependent upon snow-
shoe hare Lepus americanus densities (Boutin et al., 1995;
O’Donoghue et al., 1997; Krebs et al., 2001). Lynx densities
are lower along the southern portion of their range because
of lower snowshoe hare densities (Murray, Steury & Roth,
2008) and anthropogenic habitat fragmentation (Koehler
et al., 2008; Murray et al., 2008). Lynx are now listed as
Threatened in the US (US Fish and Wildlife Service 2000),

and while are classified as Not at Risk in Canada, there is
similar concern over viability of southern populations
(Committee on the Status of Endangered Wildlife in
Canada (COSEWIC), 2001). Development of inexpensive
and non-invasive techniques is required to better under-
stand the distribution and population trends of these
species.

Here, we combine both spatial and temporal replication
for snow surveys of large mammals throughout Banff
National Park, Canada. While wolverine and lynx were focal
species for this study, we simultaneously surveyed for cougar
Puma concolor, coyote Canis latrans, deer Odocoileus spp.
and moose Alces alces, all of which are difficult to census in
rugged and forested landscapes. Survey routes ranged from
1- to 9-day back-country ski surveys. We developed four
occupancy models that incorporated spatial correlation in
detection probability and hierarchically estimated occu-
pancy at two spatial scales: cell occupancy and segment
presence. We conducted inference with both maximum like-
lihood (ML) and Bayesian Markov chain Monte Carlo
(MCMC) methods for each model. We then assessed how
trade-offs between spatial and temporal replication affect
statistical power to detect changes in occupancy.

Study area
Our study area included 3900 km2 of Banff National Park,
Alberta, Canada (51.2 N, 115.5 W). The region contains
rugged mountain topography (elevations range: 1000–
3500 m) on the eastern side of the Continental Divide. The
area receives long cold winters and short summers (Holland
et al., 1983). Deep snow depths in alpine areas near the
Continental Divide taper to shallow snow depths in the
Montane valley bottoms along the eastern edge of the park.
Forests are dominated by Engelmann spruce Picea
engelmannii and subalpine fir Abies lasiocarpa in the subal-
pine and lodge-pole pine Pinus contorta in the Montane.
Carnivores in the region included wolverine, lynx, cougar,
red fox Vulpes vulpes, coyote, wolf Canis lupus, black bear
Ursus americanus and grizzly bear Ursus arctos. Ungulates
in the region included elk Cervus canadensis, moose, mule
deer Odocoileus hemionus, white-tailed deer Odocoileus
virginianus, bighorn sheep Ovis canadensis and mountain
goat Oreamnos americanus.

Methods

Snow-tracking occupancy surveys

We developed ski survey routes to sample thirty-nine 100-
km2 hexagons throughout Banff National Park during 2012
(Fig. 1). We divided each ski route into 1-km segments and
conducted surveys from February through early April when
snow consolidation provided easier and safer skiing condi-
tions through avalanche terrain. For each 1-km segment,
surveyors recorded the presence/absence of each species.

Snow occupancy surveys J. Whittington et al.

2 Animal Conservation •• (2014) ••–•• © 2014 The Zoological Society of London



Surveyors estimated the maximum number of days that
tracks could have persisted given previous snowfall, wind
and sun events on each segment (DaysSnow) because we
expected that this sampling window would influence detec-
tion rates. We recorded separate estimates of DaysSnow
for carnivores and ungulates because ungulates penetrate
deeper into the snow. We centred DaysSnow around the
mean (3.7 for carnivores; 6.6 for ungulates) and divided by
the standard deviation. We chose 100 km2 as our grid cell
size because it has been used to monitor wolverine in
Ontario (Magoun et al., 2007). Ellis, Ivan and Schwartz
(2014) found that cell sizes of 100 and 225 km2 had similar
power to detect changes in wolverine density but that
power decreased with larger cell sizes of 1000 km2. While
100 km2 might be the optimal cell size for wolverine, it may
not be best for other species in our study with smaller home
ranges.

Occupancy modelling

We developed four occupancy models that used both spatial
and temporal replication to estimate occupancy rates. Data

considered are detection events yijk on cell i, the 1-km
segment j and temporal replicate k. All models included
parameters for occupancy ψ and detection probability p.
Cell occupancy was a Bernoulli trial with a success param-
eter ψ, which can be interpreted as the proportion of study
area occupied. We assumed that cell occupancy was inde-
pendent of other cells and did not change during our
surveys. We estimated ψ using the logit-linear function
logit(ψ) = βψ to constrain parameter estimates between 0
and 1. Detection probability pi was the probability of
detecting a species in celli given that the cell was occupied.
All of our models build upon these parameters and the
general occupancy modelling approach of MacKenzie et al.
(2002) who used a zero-inflated binomial model with the
likelihood,

L y p y K p I di i
i

M
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=
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Here, M is the number of cells surveyed, K is the number
of times each cell is surveyed, yi is the number of times the
species was detected out of K surveys and di is the total
number of detections in cell i. I(.) takes the value 1 when the
expression in the brackets is true and 0 otherwise. The first
term in the likelihood expression describes detection at the
occupied sites using a binomial model. The second term
describes sites where the species was never detected and the
species may be truly absent.

Our first model, which we term Independent Detection,
assumes the spatial and temporal replicates are independent
and exchangeable. The likelihood for this model can be
calculated as
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where logit (pijk) = αIntercept + αDaysSnowDaysSnowijk.
Our second model, which we term Markovian Detection,

follows the same structure as the Independent Detection
model, except that detection probabilities are autoregressive
in space. It is based upon the spatially replicated models of
Hines et al. (2010) where the probability of detection is
affected by detection on the previous segment during the
same sampling occasion. Thus,

logit p yijk Intercept ylag i j k DaysSnow ijk( ) = + +−α α α, , .1 DaysSnow

The first segment of a survey lacks a previous segment
and thus yj−1 could be either 0 or 1. Therefore, we used a
weighted mean detection probability pmean for the first
segment. We calculated both p and p′ for yj−1 equal to 0

and 1 respectively and then calculated p
p

p p
mean =

+ − ′( )1
(Hines et al., 2010).

Figure 1 Map showing the number of times each 1-km segment was
surveyed for wildlife tracks during 2012 in Banff National Park. Spatial
and temporal replicates within the 100-km2 hexagons were used to
estimate detection probabilities. Each dot represents a 1-km long
segment. The inset map shows a sequence of wolverine detections
for a portion of the study area.

J. Whittington et al. Snow occupancy surveys

Animal Conservation •• (2014) ••–•• © 2014 The Zoological Society of London 3



Our third and fourth models hierarchically modelled
occupancy at two spatial scales: cell occupancy and segment
presence (Nichols et al., 2008), and therefore, segment pres-
ence is conditional on the cell being occupied, and detection
at a segment conditional on presence at the segment. Our
third model, which we term Independent Segment, assumes
that if a cell is occupied, segments have a probability of
species presence θ. Probability of presence on one segment
does not influence probability of presence on other seg-
ments. Note that a species could be present but not detected
on a segment, and that if the cell is unoccupied, all segments
are also unoccupied. Moreover, the probability of species
presence on a segment is the product ψθ and detection prob-
ability p is probability of detection given the segment is
occupied. Multiple surveys of segments at different points in
time are used to estimate detection probability. We mod-
elled θ in a logit-linear form such that logit(θ) = βθ. We
nested temporal replicates within spatial replicates similar to
Mordecai et al. (2011). The likelihood for this model is
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Our fourth model, which we term Markovian Segment, is
similar to the Independent Segment model except that prob-
ability of species presence on a segment is autoregressive in
space. Species presence on one segment depends upon
species presence on the previous segment. We thus calcu-
lated θ as logit (θij) = βθ + βθlagΦij−1. Here, Φ is a latent vari-
able for whether or not the species was present on the
previous segment. This model is similar to the Hines et al.
(2010) first-order Markovian process model, except it con-
tains within segment temporal replication. For the first
segment of each cell where the state of the previous segment
is unknown, we used a weighted average of θ (as above) for
Φj − 1 = 0 and 1, respectively.

We estimated parameters for all models using both
MCMC and ML approaches. ML approaches were prefer-
able for model comparisons and power analyses (see below),
but we also provided MCMC methods because they can be
more easily extended into multi-season occupancy models.
For each ML model, we estimated all parameters on the
logit scale using the optim function in R and the quasi-
Newton algorithm for optimization. For each MCMC
model, we estimated ψ on the probability scale with a
Uniform(0, 1) prior distribution and all other parameters on
the logit scale using a Normal(0, 100) prior distribution. We
ran three chains with randomly generated starting values
and 60 000 iterations per chain. We removed the first 10 000
iterations (burn in) and then selected every fifth iteration for
analysis. We assessed MCMC convergence by examining
trace plots and the Gelman–Rubin statistic where values
<1.1 suggest no evidence for lack of convergence (Kéry &
Schaub, 2011).

Power analyses

We assessed the trade-offs between spatial and temporal
replication in occupancy surveys by conducting statistical
power analyses. We examined how the distribution of
spatial and temporal replicates, spatial correlation in detec-
tion probability and number of cells (50 and 100) affected
power to detect absolute decreases in occupancy ranging
from 0 to 0.5 over a single time interval. We used 16 total
replicates, which was lower than our mean number of rep-
licates per cell (22). We used three combinations of spatial
and temporal replicates: 1 spatial and 16 temporal; 4 spatial
and 4 temporal; and 16 spatial and 1 temporal. We used two
mean detection probabilities (0.15 and 0.30) and two levels
of serial correlation in detection probability. Those levels of
serial correlation were independence (p = p′ ) and strong
serial correlation (p′ − p = 0.6). We calculated power by data
simulation. For each simulation, we created two independ-
ent data sets, the first with ψ = 0.75 and the second with ψ
ranging between 0.25 and 0.75. For simulations with spatial
replication, we applied our Markovian Detection ML
model to the two data sets; otherwise, we applied our Inde-
pendent Detection model. We calculated occupancy and
standard errors for each data set on the probability scale
using the delta method. We then calculated a Wald statistic

as
ˆ ˆψ ψ

ψ ψ

1 2

1
2

2
2

−

+( )SE SE� �
(Guillera-Arroita & Lahoz-Monfort,

2012). We ran 1000 simulations per scenario and calculated
power as the percentage of simulations with a Wald statistic
greater than 1.96 (two-sided type I error = 0.05). For the
first segment of each survey, we used the weighted mean
detection probability in data simulation and analysis. We
compared our power estimates to baseline power with
p = p′ = 1. For these perfect detection probability scenarios,
we generated occupancy data with no replicates, estimated
parameters using standard logistic regression and calculated
a Wald statistic as above.

We performed our analyses using R 3.0.2 (R Development
Core Team, 2013), an R interface to JAGS 3.3 (http://
sourceforge.net/projects/mcmc-jags) and QGIS 1.8 (www
.qgis.org). All data and R-scripts for occupancy modelling
and power analysis can be found in Supporting Information
Appendix S1–S4. Data are also available from the Dryad
Digital Repository: http://doi.org/10.5061/dryad.v4p20.

Results
We accumulated 872 km of snow-tracking surveys across
39 cells. Each cell contains an average of 11.7 segments
(median = 11, range = 2–27). We conducted multiple
surveys on 44% of the cells and 40% of the 443 segments. We
detected each species on between 6 (cougar) and 23 (wolver-
ine) of the 39 cells.

Occupancy estimates from the MCMC Markovian
Detection model were highest for wolverine, lynx and moose
and lowest for cougar (Fig. 2). Within each species, occu-
pancy estimates for the Independent Detection and Inde-
pendent Segment models were similar. Occupancy estimates

Snow occupancy surveys J. Whittington et al.
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were slightly higher for the two Markovian models than the
two Independent models. The Markovian Segment models
had the highest occupancy estimates but also had the largest
confidence intervals.

The Markovian Detection model had the lowest Akaike
information criterion (AIC) for all species (Fig. 3). We
removed the cougar Independent and Markovian models
because of wide confidence intervals (CIs) and periodicity in
MCMC trace plots. The Markovian Detection lag term for
whether or not the species was detected on the previous
segment was significantly greater than zero for all species,
which suggests strong serial correlation in detection prob-
abilities at the 1-km segment scale (Fig. 4). Weighted mean
detection probabilities at the mean DaysSnow were as
follows: wolverine 0.12, lynx 0.16, cougar 0.14, coyote 0.31,
deer 0.45 and moose 0.15. Detection probability signifi-
cantly increased with DaysSnow for wolverine and moose
but not for other species. ML and MCMC methods pro-
duced similar parameter estimates.

Our power analysis found that temporal and spatial rep-
licates have the same power to detect decreases in occupancy
when segments are independent (Fig. 5). Temporal repli-
cates have higher power than spatial replicates when seg-
ments are spatially correlated. Increasing mean detection
probability and number of cells sampled reduced the differ-
ence in power between spatial and temporal replicates.
Given our choice of survey effort and detection probability,

power for temporal replicates and independent spatial rep-
licates was equal to or slightly below our baseline power of
perfect detection.

Discussion
Recent advances in occupancy modelling techniques have
made track surveys with spatial replication increasingly
promising approach for monitoring wide-ranging species
over large geographical areas (Hines et al., 2010;
Guillera-Arroita et al., 2011; Thorn et al., 2011). The addi-
tion of temporal replicates to spatial replicates increases the
cumulative probability of detection and thus improves pre-
cision of occupancy estimates. Like Hines et al. (2010), we
found that modelling spatial correlation between adjacent
trail segments increased occupancy estimates and failing to
account for the spatial correlation would result in negatively
biased occupancy estimates with increased type I error asso-
ciated with narrow CIs. Given the prevalence of winter
snow-based tracking studies in monitoring (Stephens et al.,
2006; Golden et al., 2007; Linnell et al., 2007; Magoun
et al., 2007; Gardner et al., 2010; Aing et al., 2011; Webb &
Merrill, 2012), spatially and temporally replicated occu-
pancy surveys are a promising monitoring technique.

We chose to split transects into 1-km segments and
model spatial correlation among segments using Markovian
processes as described by Hines et al. (2010). Other

Figure 2 Proportion of cells where each
species was detected (shaded bars) and
predicted occupancy rates (black points
with 95% confidence intervals) for each
maximum likelihood model. Thirty-nine
hexagons were sampled in 2012.

J. Whittington et al. Snow occupancy surveys
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approaches for dealing with spatial correlation include
increasing segment size until segments show no spatial cor-
relation (Thorn et al., 2011), using autoregressive models
(Aing et al., 2011; Burton et al., 2012), including transect

level random effects in state-space models (Mordecai et al.,
2011), and using Markov-modulated Poisson processes to
model clustered species detections (Guillera-Arroita, 2011;
Guillera-Arroita et al., 2012). The advantage of this later
approach is that transects do not need to be split into dis-
crete segments. We chose a Markovian approach with dis-
crete segments because it was intuitively simple and we
could model movement processes for species travelling long
distances on trails.

Our analysis did not include habitat- or human use-
related covariates that could affect probability of detection,
cell occupancy, or colonization and extinction rates (Kéry,
Guillera-Arroita & Lahoz-Monfort, 2013). Inclusion of
larger scale, cell-level explanatory variables such as spring
snow cover for wolverine (Copeland et al., 2010; McKelvey
et al., 2011) and indices of hare abundance for lynx (Boutin
et al., 1995; O’Donoghue et al., 1997; Krebs et al., 2001)
could be important for understanding the mechanisms
behind changes in species occupancy (Mattfeldt, Bailey &
Grant, 2009). Moreover, including covariates at both the
cell and the segment scales can be important for understand-
ing how processes operating at multiple spatial scales affect
species occurrence (Mordecai et al., 2011; DeCesare et al.,
2012).

We found that while spatial and temporal replicates have
identical statistical power to detect changes in occupancy
with independent segments, spatial correlation in detection
probability reduced power. The negative effects of spatial
correlation decreased with increased detection probability

Figure 3 Comparison of ΔAIC (Akaike infor-
mation criterion) values from maximum
likelihood models where ΔAIC equals AIC
minus the model with the minimum AIC.
The most parsimonious model for each
species has a ΔAIC value of 0.

Figure 4 Parameter estimates and 95% confidence intervals
[maximum likelihood ML)] and 95% credible intervals [Markov chain
Monte Carlo (MCMC)] for each species.

Snow occupancy surveys J. Whittington et al.
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and number of sites sampled. Power to detect small changes
in occupancy was constrained by the number of cells rather
than the number of replicates. Thus, approximately 100 cells
are required to achieve 80% power to detect a 0.2 decrease in
occupancy over a single time period. If managers were inter-
ested in the number of cells occupied rather than ψ, then
finite population corrections could potentially be applied to
reduce variance and increase power (Ellis et al., 2014). If
managers were interested in longer term trend estimates
rather than short-term changes in occupancy, increasing
the number of seasons sampled would reduce variance
around the trend estimate and would thus increase power
(MacKenzie, 2005). Decisions on how to allocate effort
towards number of sites and spatial versus temporal
replicates are an important component of robust study
design (MacKenzie & Royle, 2005; Bailey et al., 2007;
Guillera-Arroita, Ridout & Morgan, 2010; Guillera-Arroita
& Lahoz-Monfort, 2012) and will depend upon spatial cor-
relation in detection probability, mean detection probability
and costs required to access sites.

In our study, wolverine and lynx had the highest level of
spatial correlation and relatively low detection probabilities.
Thus, future surveys require more than 16 replicates per cell
and an expanded study area. Inclusion of habitat-related
covariates at the cell and segment spatial scales could
improve estimates of cell occupancy, segment presence and
detection probability which would increase power to detect
spatial variation in occupancy. Interestingly, Ellis et al.

(2014) found through simulation that most temporally rep-
licated occupancy sampling schemes for wolverine snow
surveys had low power to detect decreases in occupancy
associated with declines in density. Their low power was
likely driven by spatial overlap of wolverine home ranges
(Gaston et al., 2000; Stanley & Royle, 2005). Wolverine in
these simulations could travel large distances across cells
and thus the movements of a few individuals could mask
declines in density. We directly examined power to detect
changes in occupancy rather than density and our results are
especially applicable to situations where changes in occu-
pancy are driven by changing habitat quality, climatic
conditions and human activity.

Our estimates of occupancy can provide managers with
useful indices for estimating the abundance and distribution
of difficult to monitor threatened species. For example,
adult female wolverine home ranges along the Rocky
Mountains range from an average of 139 km2 in Glacier
National Park Ecosystem (Copeland et al., 2010) to 303 km2

in the Yellowstone Ecosystem (Inman et al., 2012). Wolver-
ine occupied approximately 3300 km2 of our study area.
Given these home-range sizes, <2% overlap between same
sex adults (Inman et al., 2012), and assuming females
occurred in all cells, between 10 and 23 adult female wol-
verines likely used our study area. Adult female lynx in the
Southern Canadian Rockies had average 100% minimum
convex polygon home ranges of 211 km2 (Apps, 2003) and
same sex overlap for lynx can be very high (Poole, 1995).

Figure 5 Statistical power to detect
decreases in occupancy. Simulations exam-
ined how mean detection probability, levels
of serial autocorrelation and number of cells
(50 and 100) affected power using spatial
and temporal replicates. Segments were
independent for simulations with p = p′,
where p and p′ indicate detection probabili-
ties for when the species was not and was
detected on the previous segment, respec-
tively. Segments had strong serial correla-
tion for simulations with p′ − p = 0.6.
Power analyses were conducted with a
starting occupancy probability of 0.75 and
absolute decreases in occupancy ranging
from 0 to 0.5. Simulations tested for signifi-
cant changes in occupancy using a Wald
test with a two-sided type I error of 0.05.

J. Whittington et al. Snow occupancy surveys
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Given that lynx occupied approximately 2100 km2 of our
study area, our study area likely contained a minimum of 10
adult females. These population estimates are approximate
and have inherent limitations. For example, if wolverine and
lynx use portions of the 100-km2 grid cells because their
home range straddles two cells, then we would overestimate
the area occupied and the minimum number of animals.
However, if that were the case, we would expect low values
of θ for our hierarchical segment models. Conversely, we
would underestimate the minimum number of individuals
for species whose home ranges overlap. The next step is to
understand how changes in population size affect the
amount of home-range overlap and occupancy–abundance
relationships (Gaston et al., 2000; Tempel & Gutiérrez,
2013).

We used a hierarchical approach to combine spatial rep-
lication across the study area with temporal replication for
portions of the study area to estimate detection probabilities
and occupancy. The advantage of applying temporal repli-
cation to spatial surveys is it increases precision in estimates
of occupancy and detection probability and it can reduce
biases in occupancy estimators. Ground snow-tracking
surveys are a potentially powerful tool because they simul-
taneously monitor multiple species over large spatial areas.
Our approach to analysing snow-tracking surveys could be
applied to other study areas looking to monitor species of
conservation concern such as wolverine and lynx across
remote and rugged landscapes.
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