Data

Publication Dataset Description Source & Link
Higuera, P.E., C.E. Briles, and C. Whitlock. Fire-regime complacency and sensitivity to centennial- through millennial-scale climate change in Rocky Mountain subalpine forests, Colorado, U.S.A. 2014. Journal of Ecology. 1429-1441 Paleoecological data used to reconstruct vegetation and fire history from Lone Pine, Odessa, Sand Beach, and Thunder lakes, Rocky Mountain National Park, CO, plus Matlab code to recreate analyses and Fig. 2-4:
  • pollen data
  • charcoal data
  • chronology data
  • Matlab scripts and functions
Dryad 
Dunnette P.V., P.E. Higuera, K.K. McLauchlan, K.M. Derr, C.E. Briles, M.H. Keefe. 2014. Biogeochemical impacts of wildfires over four millennia in a Rocky Mountain subalpine watershed. 2014. New Phytologist. 203: 900-912 doi: 10.1111/nph.12828 Paleoecological data used to reconstruct fire, biogeochemical, and vegetation history from Chickaree Lake, Rocky Mountain National Park, CO, plus Matlab code to recreate analyses and Fig. 2-6:
  • biogeochemical data
  • charcoal data
  • pollen data
  • chronology data
  • Matlab scripts and functions
FigShare 
McWethy, D. B., P. E. Higuera, C. Whitlock, T. T. Veblen, D. M. J. S. Bowman, G. Cary, S. G. Haberle, R. E. Kean, B. D. Maxwell, M. S. McGlone, G. L. W. Perry, J. M. Wilmshurst, A. Holz, and A. Tepley. 2013. A conceptual framework for predicting temperate ecosystem sensitivity to human impacts on fire regimes.Global Ecology & Biogeography 22:900-912. Matlab code needed to recreate Fig. 5 from McWethy et al. (2013):
  • CRU global temp. and precip. data
  • Global paleofire database site locations
  • Matlab scripts and functions
FigShare
Higuera, P. E., M. L. Chipman, J. L. Barnes, M. A. Urban, and F. S. Hu. 2011. Variability of tundra fire regimes in Arctic Alaska: millennial scale patterns and ecological implications. Ecological Applications 21:3211-3226. Paleoecological data used to reconstruct vegetation and fire history from Raven, Uchugrak, Poktovik, and Little Isac lakes, Noatak National Preserve, Alaska:
  • pollen data
  • charcoal data
  • chronology data
  • modern fire history and lake location
Ecological Archives
Kelly, R.F.*, P.E. Higuera, C.M. Barrett*, and F.S. Hu. 2011. A signal-to-noise index to quantify the potential for peak detection in sediment-charcoal records. Quaternary Research, 75: 11-17. Simulated charcoal data used in the manuscript:
  • charcoal data (simulated)
 FigShare
Higuera, P.E., D.G. Gavin, P.J. Bartlein and D.J. Hallett. 2010. Peak detection in sediment-charcoal records: impacts of alternative data analysis methods on fire-history interpretations. International Journal of Wildland Fire, 19: 996-1014. Empirical and simulated charcoal data used in manuscript:
  • charcoal data (empirical and simulated)
FigShare 
Higuera, P. E., L. B. Brubaker, P. M. Anderson, F. S. Hu, and T. A. Brown. 2009. Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecological Monographs79:201-219. Paleoecological data used to reconstruct vegetation and fire history from Ruppert, Xindi, Code, and Wild Tussock lakes, Brooks Range, Alaska: 
  • pollen data
  • charcoal data
  • chronology data
  • Matlab function for likelihood ratio test
FigShare