Ponderosa Pine in the Inland Northwest
Observed vs. Projected Response to Pre-Commercial Thinning

David Affleck
Department of Forest Management, University of Montana

INGY Winter Technical Meeting
Coeur D’Alene, ID March 2014
Response of Ponderosa Pine Stands to Pre-Commercial Thinning on Nez Perce and Spokane Tribal Forests in the Inland Northwest, USA

Dennis E. Ferguson, John C. Byrne, William R. Wykoff, Brian Kummet, and Ted Hensold

United States Department of Agriculture / Forest Service
Rocky Mountain Research Station
Research Paper RMRS-RP-88
June 2011

Inland Empire (IE) Variant Overview
Forest Vegetation Simulator

Jewel Basin, Flathead National Forest
(Chad Keyser, FS-WOD-FMSC)
Forest Vegetation Simulator (Inland Empire variant)

Small-tree growth logic (DBH < 3”):
- Height
 - Height Growth
 - DBH
 - BAL
 - CCF

Large-tree growth logic (DBH ≥ 3”):
- DBH
 - DBH Growth
 - Height growth
 - BAL
 - CCF
 - Crown ratio
Forest Vegetation Simulator (Inland Empire variant)

Small-tree growth logic (DBH < 3”):

- Height
- Height Growth
- DBH
- BAL
- CCF

Large-tree growth logic (DBH ≥ 3”):

- DBH
- DBH Growth
- Height growth
- Height
- BAL
- CCF
- Crown ratio
Forest Vegetation Simulator (Inland Empire variant)

Small-tree growth logic (DBH < 3”)

- Height
 - Height Growth
 - BAL
 - CCF
 - Crown ratio

Large-tree growth logic (DBH ≥ 3”):

- DBH
 - DBH Growth
 - BAL
 - CCF
 - Crown ratio
 - BAL
 - CCF
 - Mean Height
 - BA
 - MAI
 - PCT
Experimental design: 7 installations

- 1997/1998: +0
- 1998/1999: +1
- 2000/2001: +3
- 2002/2003: +5
- 2011: +14/13
Initial size

<table>
<thead>
<tr>
<th>Reubens</th>
<th>West Talmaks</th>
<th>East Castle Rock</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Graph 4](image4.png)

![Graph 5](image5.png)
Stand basal area

- At 5 years
- In 2011

Basal area in trees >2.3 inches DBH (ft²/ac)

Initial spacing (ft)
DBH in 2011
Heights in 2011

<table>
<thead>
<tr>
<th>FVS/IE projection</th>
<th>Measured</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Height (ft) in 2011</th>
<th>Initial spacing (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

The graph shows the relationship between initial spacing and height in 2011, comparing FVS/IE projection with measured data.
Heights to crown base in 2011
Summary & Implications

1. FVS projections of aggregate basal area exceeded observed levels except at widest spacings
 - mortality projections need scrutiny

2. FVS projections of DBH distributions were high but consistent with observed distributions

3. FVS projections of tree height and height-to-crown-base distributions increased with spacing
 - FVS does not allow DBH-height allometries to vary
 - effects are expected to amplify over time
Summary & Implications

1. FVS projections of aggregate basal area exceeded observed levels except at widest spacings
 - mortality projections need scrutiny

2. FVS projections of DBH distributions were high but consistent with observed distributions

3. FVS projections of tree height and height-to-crown-base distributions increased with spacing
 - FVS does not allow DBH-height allometries to vary
 - effects are expected to amplify over time
Summary & Implications

1. FVS projections of aggregate basal area exceeded observed levels except at widest spacings
 - mortality projections need scrutiny

2. FVS projections of DBH distributions were high but consistent with observed distributions

3. FVS projections of tree height and height-to-crown-base distributions increased with spacing
 - FVS does not allow DBH-height allometries to vary
 - effects are expected to amplify over time